Arquivos

Archive for segunda-feira, 7 set 2009; \37\UTC\UTC\k 37

O problema da seta do tempo

segunda-feira, 7 set 2009; \37\UTC\UTC\k 37 18 comentários

Por que podemos ir da esquerda para a direita, mas não temos acesso ao passado? Por que girar um objeto no espaço não causa os mesmos paradoxos que imaginar matar o seu avô?

O problema da seta do tempo é um dos mais célebres problemas fundamentais da Física. Ele deve ter sido percebido pela primeira vez na mecânica de Newton, quando notou-se que tipicamente os sistemas mecânicos conhecidos admitem uma inversão temporal. O que isso quer dizer? Se temos a equação de Newton,

\mathbf{F}(\mathbf{v},\mathbf{x},t) = m\mathbf{a}

e uma de suas soluções

\mathbf{x}(t) = \boldsymbol{\gamma} (t)

então temos automaticamente outra solução:

\mathbf{x}(t) = \boldsymbol{\gamma} (-t)

Isso significa que a equação de Newton não consegue distinguir passado do futuro: se eu tenho uma solução que leva uma condição inicial x_0, v_0, t_0 em x,v,t, é também solução do sistema percorrer o trajeto de x,v, t até x_0, v_0, t_0.

A primeira lei da Natureza descoberta que faz diferença entre passado e futuro é a segunda lei da Termodinâmica, quando enunciada da seguinte forma:

Se considerarmos um sistema físico em equilíbrio, i.e. estamos olhando para um conjunto de observáveis desse sistema X que independem do tempo, então existe uma função S convexa dos valores dessas variáveis tal que se permitimos um ou mais elementos do conjunto X variar, o sistema atingirá equilíbrio novamente de tal forma que S é um máximo com respeito aos valores acessíveis de X.

O que essa afirmação quer dizer é o seguinte. Suponha que você tem um gás dentro de um recipiente de volume total V. Nós dizemos que o volume acessível ao gás é V. O gás poderia ocupar um volume menor, porque não existe nada impedindo isso de acontecer (nenhum vínculo). Existe um vínculo que impede o gás de ocupar um volume maior que V que são as paredes do recipiente. A segunda lei da Termodinâmica diz que o gás ocupará um volume V’ que deve ser tal que a função S(V) é um máximo em V’ dado o vínculo de que V' \leq V. Para um gás, S(V) \propto \log V, então é possível mostrar que o máximo de fato ocorrerá para V' = V. Para resolver esse problema de maximização, é necessário introduzir uma variável extra, conjugada ao volume V, que é conhecida como multiplicador de Lagrange. Essa variável é o que se chama a pressão.

A segunda lei da Termodinâmica é na verdade uma afirmação mais forte que a que eu coloquei nesse texto, mas para o problema da seta do tempo, as demais propriedades da função S não me importam. E é isso mesmo que você está pensando, S é a entropia.

Por que essa lei parece ter algo a ver com a seta do tempo, se em Termodinâmica não existe a variável tempo? É porque se uma vez você permite S aumentar de valor, então os estados com entropia menor agora são fisicamente inacessíveis devido a convexidade de S. Por exemplo, uma função convexa é o logarítmo, então se supormos que para um gás S(V) = \log(V) , uma vez que o volume acessível ao gás V satisfaça V \leq V', o gás sempre será encontrado ocupando um volume V’, e nunca menor.

Durante as décadas de 1860 e 1870, Ludwig Boltzmann e Josiah Willard Gibbs começaram a conectar a termodinâmica com as leis da mecânica, dentro da disciplina que se chamou a Física Estatística. A peça chave para fazer essa conexão foi proposta por Boltzmann. Mas hoje em dia nós entendemos o significado dessa peça chave graças ao trabalho de Edwin Jaynes. Felizmente já há um bom post de blog sobre isso aqui. Boltzmann mostrou que aquela quantidade de informação total contida na descrição de um sistema satisfaz

- \frac{d}{dt} H( \{p_i\}) = -\frac{d}{dt} \sum_i p_i \log p_i \geq 0

Esse é o celebrado Teorema H. Esse teorema hoje pode ser demonstrado de forma genérica como conseqüência direta da mecânica quântica. É tentador identificar a quantidade acima como a entropia, e mais ainda, concluir que o problema da seta do tempo está resolvido porque o teorema supostamente nos diz que a entropia sempre aumenta no tempo. Porém, isso é incorreto em diversos níveis, de diferentes formas.

Uma inconsistência, a mais famosa, foi apontada pelo colega e professor de Boltzmann, Johann Loschmidt. Suponha que existe uma solução da equação de Newton para os constituintes do sistema que leva-o do estado i para o estado f, e suponha que a entropia só depende do estado do sistema, então se S(f) > S(i) e se existe reversibilidade temporal, há uma solução da mesma equação de Newton que leva o sistema de f para i e portanto viola a segunda lei da Termodinâmica. Não há violação do teorema H, e sim da segunda lei da Termodinâmica, pois o teorema H também admite que a informação perdida de um sistema diminua no tempo (ao invés de crescer) se você permite reversibilidade temporal na mecânica. Isso deveria ser óbvio do fato de que você pode tomar dt \rightarrow -dt. Isso levou Loschmidt a apontar que o teorema H não é equivalente a segunda lei da Termodinâmica.

O mito de que a segunda lei da Termodinâmica pode ser “provada” a partir de uma mecânica reversível continuou. Em 1971, E. T. Jaynes encontrou a recíproca do paradoxo de Loschmidt: é possível satisfazer a segunda lei da Termodinâmica e violar o teorema H.

O paradoxo de Loschmidt pode ser facilmente generalizado para a mecânica quântica. Se temos um sistema no tempo t_i descrito por uma matriz de densidade \rho_i e em t_f por \rho_f e uma evolução temporal que satisfaz o teorema H que leva o sistema do estado inicial \rho_i para o estado final \rho_f, supondo que existe um operador anti-unitário anti-linear T que representa a ação t \rightarrow -t, então ao aplicar T a equação do teorema H obtemos uma solução que leva T \rho_f T^{-1} como estado inicial para T \rho_i T^{-1} como estado final. Se de fato a entropia é uma função de estado, uma dessas soluções do teorema H viola a segunda lei da Termodinâmica.

Portanto, infelizmente, nós não podemos compreender a irreversibilidade da Termodinâmica sem assumir uma seta do tempo nas leis microscópicas da física. Isso é um indicativo, em outros, de que o problema da seta do tempo não é um efeito macroscópico.

Existe uma discussão moderna sobre o problema da seta do tempo que tenta transferir esse problema a uma natureza puramente de condição inicial. Você vai encontrar por ai a afirmação de que se for possível explicar porque o universo começou em um estado de “baixa entropia”, então “segue da física de Boltzmann” que o universo aumenta entropia. Naturalmente que isso é incorreto, baseado na idéia falsa de que a segunda lei da Termodinâmica do aumento da entropia pode ser de alguma forma derivada da mecânica. Além do fato que me parece incorreta essa afirmação por causa disso, como fica claro da construção da entropia feita por Jaynes, esta quantidade é “subjetiva” no sentido de que ela não depende do sistema mas de uma escolha de descrição de quem faz inferências estatísticas. O que eu quero dizer com isso é que se eu de fato fosse resolver a evolução temporal do sistema em toda sua glória, eu não precisaria da física estatística para obter a entropia do sistema e aplicar o princípio de maximização da entropia para saber o estado final. Há outra falha que posso apontar, que é a de que a segunda lei da Termodinâmica só é válida quando o número de partículas e o volume do sistema físico é “grande”. É possível demonstrar matematicamente que a probabilidade do sistema ser encontrado em estados que violam a segunda lei da Termodinâmica tende a zero no limite que o número de partículas vai a infinito, mas se você não tomar esse limite, pode existir uma probabilidade não-nula e observável de violar a segunda lei da Termodinâmica. Isso naturalmente só ocorre para sistemas mesoscópicos e microscópicos, onde já se espera que a Termodinâmica não seja válida. Ainda assim, é possível definir passado e futuro, sem se preocupar com o fato de que eventualmente a entropia pode espontaneamente descrescer.

No presente momento não há nenhuma explicação para a natureza da seta do tempo. Também não é possível traduzir o problema em termos de condições iniciais ou de contorno. Todas essas idéias de reduzir o problema da seta do tempo a entropia ou outras coisas na verdade abriga o nosso preconceito de raciocinar em termos de passado e futuro, o próprio conceito que estamos tentando explicar.

Seguir

Obtenha todo post novo entregue na sua caixa de entrada.

Junte-se a 66 outros seguidores

%d blogueiros gostam disto: