Arquivos

Posts Tagged ‘Yang’

Continuação analítica da função de partição…

sexta-feira, 6 nov 2009; \45\UTC\UTC\k 45 Deixe um comentário

Continuando no espírito dos posts Teorias Topológicas de Campo e suas Continuações Analíticas e Grothendieck, Sistemas Dinâmicos, Dualidade de Langlands e Higgs Bundles, mais um ingrediente pra temperar essa mistura, dessa vez vindo de Materia Condensada,

Essencialmente, nos dois primeiros artigos, Lee e Yang demonstram o chamado Teorema de Lee-Yang — essencialmente, o teorema mostra que, sob “certas condições” (é muito importante que essas condições sejam satisfeitas), os zeros da função de partição são imaginários; esses são os chamados zeros de Lee-Yang.

Por outro lado, os chamados zeros de Fisher têm origem numa construção muito semelhante a anterior, a diferença relevante entre ambas as construções sendo que, no caso de Fisher, a temperatura é continuada analiticamente [para os Complexos].

Nesse sentido, a construção de Fisher pode ser considerada a continuação analítica dos resultados de Lee-Yang.

A pergunta que se põem sozinha é: “Será que é possível fazer o mesmo em QFT e em Teorias de Gauge?” :idea:

A resposta está longe de ser trivial ou conhecida, vide os dois primeiros posts linkados acima. Mas, agora, com um caso mais concreto pra se comparar… quem sabe não é possível se aprender alguma coisa…?! :wink:

Entrevista com Simons e Yang…

sábado, 6 jun 2009; \23\UTC\UTC\k 23 Deixe um comentário

Não é preciso apresentações…

Edição de fevereiro.

terça-feira, 17 fev 2009; \08\UTC\UTC\k 08 36 comentários

O título é um pedido de desculpas por ter estado tão ausente nessas ultimas semanas, mas nem sempre dá para aparecer por aqui. Então, esse vai ser um post com diversos assuntos, motivado por conversas com colegas ao longo do último mês, a maioria no orkut. Então, nessa edição temos:

  1. História da física (parte 2) – Anomalias
  2. A história do Jim Simons, Renaissance Tech e Stony Brook
  3. Partícula num aro (parte 2) – Mecânica quântica
  4. Rapid communications: pós-graduações no EUA e conferência sobre supercordas

Há algum tempo, um colega me perguntou sobre a relação de laços de Wilson e anomalias. Eu não conhecia a relação e, na verdade, ela nem chega a ser muito profunda. Em vista da oportunidade, deixa eu contar o que são anomalias de uma forma semi-técnica, aborando um pouco da história envolvida.

Tudo começou com um cálculo que foi tentado por Tomonaga onde ele calculou perturbativamente em 1 loop o propagador do fóton \langle J_{em}^{\mu} J_{em}^{\nu} \rangle. Há dois fatos experimentais inequívocos sobre o fóton (que na verdade é um só): ele não tem massa e é trasnversal, ie, há apenas dois estados de polarização. O problema dessa conta é que as quantidades definidas na ação de Maxwell, quando interpretadas quanticamente não são as quantidades medidas. São parâmetros livres, que na verdade são divergentes. As quantidades medidas dependem das interações. Quando elas são levadas em consideração, essas divergências deixam de existir e a ação quântica efetiva passa a ser função de quantidades finitas. Essa é a idéia do que se chama renormalização: em teorias renormalizáveis a ação quântica efetiva tem a mesma expressão funcional quando renormalizada ou não, mas os limites são tomados em pontos diferentes.

Bem, deixando os detalhes técnicos de lado, Tomonaga encontrou uma massa para o fóton e um estado não transveral, correções indesejadas que não podiam ser renormalizadas (Tomonaga, naquela época, usava o curioso termo “amalgamado”). Não demorou muito para as pessoas entenderem o papel das simetrias no cálculo das correções quântica. Bem, o importante para história é que essas inconsistências levou Tomonaga e seus colaboradore, Fukuda e Miyamoto a examinarem o próximo diagrama mais simples: um triângulo, ie \langle J_{\pi}J_{em} ^{\mu}J_{em}^{\nu} \rangle em 1 loop. Novamente, o resultado parecia não preservar invariância de gauge e, algo novo, o acoplamento com um pseudovetor U_{\mu} era diferente de com um pseudoescalar \partial_{\mu}U, o que é inconsistente com a equação de Dirac (na camada de massa \partial_{\mu}(\overline{\psi}\gamma_5\gamma^{\mu}\psi)=-2m\overline{\psi}\gamma_5\psi). Novamente eles perceberam que o problema estava na relação das simetrias com as integrais divergentes que apareciam durante a conta.

Esse trabalho, depois de algum tempo, chegou aos ouvido de Steinberger, em Princeton, através de Yukawa. Eles então decidiram aplicar o então recente método de Pauli-Villars para refazer as contas. E, como os leitores envovidos nessa área devem saber, o resultado foi invariante de Lorentz e invariante de gauge. Contudo, a diferença no acoplamento entre pseudoescalar e do pseudovetor continuava diferente. Em linguagem moderna: há uma anomalia quiral! Eles não sabiam muito o que fazer com esse resultado na época e a melhor sugestão no fim do artigo era esperar pela detecção experimental da reação \pi^0\rightarrow 2\gamma. Acho que poucas pessoas adotariam essa postura hoje em dia :D, mas o importante é que esse decaimento do pi-zero, na época chamado de Neutretto, de fato existe.

O problema, claro, não é simples e demorou até 1951 para Schwinger publicar uma nova forma de ataque ao problema. Num artigo que considero muito bonito “On Gauge Invariance and Vaccum Polarization”, Schwinger notou pela primeira vez com clareza que era necessário que os métodos de resolução das funções de Green fossem a todo instante invariantes de Gauge para que o resultado também fosse. Ele mostrou que a auto-energia do fóton, de fato, cancela na camada de massa e tudo parecia feliz. Mas ele também encontrou que o acoplamento para o pseudovetor e o pseudoescalar eram iguais. Um resultado que parece contrariar a existência de uma anomalia quiral. Schwinger justamente introduzia linhas de Wilson para fazer um “point-spliting” da corrente divergente. Vou deixar comentários extras para o final.

Mas outros muitos anos se passaram, e apesar dos problemas, as pessoas continuaram a usar teorias quânticas de campos para descrever a fenomenologia das interações fracas, que era o assunto quente da época. Em 1963, Rosenfeld, estudando a propriedade dos neutrinos na teoria V-A esbarrou no mesmo problema do diagrama triagular e fazendo a conta de forma a manter a invariância de gauge, ele calculou pela primeira vez a expressão da anomalia quiral, mas não deu prosseguimento à análise do resultado. Nessa época, teorias quânticas de campos não estavam muito em alta. Existiam outras teorias com pretensão de substituí-la, como a teoria de Regge e o programa da matriz-S. Existiam também teorias que pretendiam descrever teoria quântica de campos de uma forma não-perturbativa, como a teoria de álgebras de correntes.

Foi meio natural que as pessoas que trabalhavam com álgebras de correntes tentassem verificar seus resultados perturbativamente com TQC, e várias dessas pessoas deram contribuições determinantes para a criação das teorias modernas de gauge. Em particular, Gell-Mann e Levy, na década de 60, escreveram um artigo analisando as “PCAC” (putz… nem interessa! :roll:, na prática quero dizer \partial_{\mu}j_5^{\mu}=f_{\pi}m_{\pi}^2\pi(x) ) num modelo sigma linear. Na teoria quântica de campos que eles montaram, essa relação era realizada classicamente. É modelinho muito interessante com simetria SO(4) e quebrada espontaneamente. Esse trabalho se tornou uma leitura obrigatória em vários dos centros importantes de teoria quântica de campos na época. Em Stony Brook, B. Lee começou a estudar a renormalização dessa teoria e escreveu um pequeno livro influente sobre o assunto. Um aluno de doutorado de Utretch, G. ‘t Hooft, conheceu Lee na escola de verão de Carsège e resolveu aplicar os métodos para teorias de gauge. Deu no que deu. :twisted:

Depois disso, não demorou muito para Adler e, indendentemente, Bell e Jackiw entenderem a origem das anomalias como simetrias da ação clássica que não existem na ação efetiva quântica e escrevê-la como é conhecida hoje em dia. Vale notar no artigo do Bell e Jackiw, durante a batalha para entender quando a anomalia aparecia ou não nas contas, o seguinte comentário que vai no coração da questão:

Since the integral is linearly divergent a shift of variable picks up a surface term.

:) Que seja. Essa história, claro, não termina por aqui e tem muito mais coisa interessante. Mas fica para outro dia.

Antes de terminar, deixa eu só fazer um comentário sobre a conta do Schwinger. Eu acho que quem entendeu o que estava acontecendo foi o Adler. Schwinger, na sua ânsia justificada de preservar a invariância de gauge, considerava apenas derivadas covariantes na equação de conservação da corrente. Isso gera um termo extra igual a menos a anomalia. Ele também regularizava a corrente usando laços de Wilson, o que, naturalmente, preserva a invariância de gauge e introduz um termo igual a mais a anomalia. E assim, ambos se cancelam. Acontece.


Semana passada, o Jim Simons veio aqui na universidade conversar com os alunos durante o colóquio. Claro que colóquio com o Jim Simons não fica limitado aos alunos, mas lota o auditório. Foi razoavelmente interessante, ele contou sobre sua trajetória. Posso reproduzir um pouco do que ouvi e do que minha memória não fez questão de perder. Eu sei que tem leitores e editores aqui diretamente interessados em análise do mercado financeiro e, se infelizmente não posso dar muitos dados técnicos, pelo menos poderei contar uma história de sucesso.

O colóquio, que foi atípico, teve o título oficial de “Matemática, Bom Senso e Boa Sorte”. Para quem não sabe, O Jim Simons foi diretor do Instituto de Matemática de Stony Brook na década de 60, quando ele ainda não era o 178-ésimo homem mais rico do mundo. Ele hoje é dono da Renaissence Technologies, um fundo de investimento muito bem sucedido. Simons, que é o mesmo das “formas (teoria) de Chern-Simons”, nunca se afastou da universidade e investe muito dinheiro aqui. Ele, há alguns anos, quando o DOE resolveu cortar fundos dos laboratórios nacionais, manteve o BNL funcionando com dinheiro do seu bolso. Recentemente, ele doou quase 100 milhões para a construção do Simons Center for Geometry and Physics:

Simons Center for Geometry and Physics

Durante o colóquio ele anunciou mais uma doação de 20 milhões para o departamento de física. Isso só para citar as grandes doações. O Simons também mantém diversos programas aqui dentro, como um centro de formação em física de aceleradores, um programa para jovens do ensino médio em física de laser, entre outras coisas. O Brasil tem várias pessoas acima dele na lista da Forbes: o Antônio Ermírio de Moraes, Joseph Safra, o Eike Batista e o Jorge Paulo Lemann. O Safra recentemente fez algo semelhante com o IINN que já foi citado várias vezes aqui no blog. O Lemann também mantém programas de colaboração entre o Brasil e a universidade de Harvard, que se não é ideal, pelo menos é bom (ele doou um dinheiro para construção, em SP, de um escritório para organizar essas colaborações). Os demais, eu não sei estão associados à algum projeto desse porte. Mas se não estão, deveriam.

A parte matemática do título é então antiga. Naquela época, Simons era um recém doutor em matemática com um emprego em Princeton cuja carga horária deveria ser dividida metade para matemática e a outra metade para decifrar códigos da Guerra Fria. Só que um dia ele resolveu dar uma declaração para um jornalista dizendo que ele estava usando todas as metades da matemática agora e que só depois iria usar a metade para decifração de códigos de guerra. Bem, não é preciso muita imaginação para saber o que aconteceu com ele no mesmo dia. Despedido de Princeton, ele foi contratado para ser diretor (e efetivamente montar) o recém criado Insituto de Matemática de Stony Brook, um emprego que, para ser sincero, ninguém queria. Ele topou e começou um grupo que deu grandes frutos. Hoje, o programa de pós-graduação de Stony Brook normalmente aparece entre os top 5 do país. Durante sua estada aqui como diretor ele também manteve colaboração com o Yang no Instituto de Física. Os dois foram dos principais responsáveis por criar a ponte entre a física e a matemática das teorias de gauge (conexões de fibrados).

Agora vem a parte boa sorte. Naquela época, Simons investiu dinheiro com um amigo que trabalhava com câmbio e, por sorte, ganhou uma bolada de alguns milhões. E milhões de dólares naquela época era muito mais do que hoje. Milionário de uma hora para outra, ele resolveu mudar de direção na vida. Se esse colega dele podia ganhar dinheiro, ele também poderia. Matemático que era, ele e um outro professor daqui de Stony Brook começaram a tentar criar modelos para investir em câmbio. A realidade é que não deu muito certo, mas Simons conta que naquela época era tão fácil ganhar dinheiro, que ele rapidamente multiplicou seu dinheiro por um fator de 10 (e ele conta que isso nem chegou a impressionar muita gente).

Bom senso é a última parte. A década de 80 veio e ganhar dinheiro ficou um pouco mais difícil. Nesse ponto, ele decidiu novamente investir somente na construção de modelos. Com a ajuda de outro matemático (que me esqueci o nome, acho que ele não está mais na Renaissance Tech, parece que ele não conseguia trabalhar muito bem em equipe), ele abandonou completamente o tipo de investimento que fazia antes para só fazer investimentos baseados nos resultados desses modelos de mercado. Dessa vez deu certo. Hoje em dia, a Renaissance Tech conta com uma equipe composta basicamente de Ph.D.s e se orgulha de ter, mantidas as devidas proporções, um ambiente de trabalho acadêmico num fundo de investimento. Nem todos matemáticos, claro. Parece que hoje em dia há muito cientista da computação, já que além de criar modelos eles tem que lidar com a análise de 3 TB de dados por dia e tomar as decisões antes dos concorrentes. Se há alguma diferença do meio acadêmico real é que o resultado das suas idéias está alí, na sua frente, tudo reduzido a quanto dinheiro você ganhou ou perdeu.

No que volta à matemática. Simons recentemente voltou a trabalhar com matemática. Ele certamente é o aluno mais rico do mundo nessa área :P. E está trabalhando ativamente com o Dennis Sullivan, aqui mesmo em Stony Brook. Interessante, não?


Há algum tempo atrás, eu e Leandro escrevemos sobre a mecânica clássica de uma partícula num aro e como se pode aprender bastante sobre física com esse modelo simples. O post teve uma repercussão ótima e me motiva a fazer uma segunda parte. Vamos agora estudar a mecânica quântica de uma partícula no aro e vamos ver que podemos aprender também uma miríade de coisas através de analogias. Esse post vai ser um pouco mais alto nível, mas com certeza tem seu público.

Vou começar com uma lagrangeana bem geral:

L=\frac{M}{2}\dot{\phi}^2+A\dot{\phi}

Note que o segundo termo, sendo uma derivada total não influencia a equação de movimento que é simplesmente M\ddot{\phi}=0, onde M é o momento de inércia e \phi é uma variável angular.

Duas coisas devem ser notadas, para um determinado tempo inicial e final, há infinitas soluções para as equações de movimento, classificadas por um número inteiro (o número de voltas que ela dá no círculo). Isso é uma consequência da topologia não-trivial, ou mais especificamente, do grupo fundamental não-trivial, do círculo. Esse é o tópico que quero falar.

Além disso note que apesar de não mudar as equações de movimento, o momento canônico e a hamiltiana se alteram:

p =m\dot{\phi}+A;\qquad H=\frac{1}{2M}(p-A)^2

e é por isso que a mecânica quântica desse exemplo é tão bacana. Quantizar o sistema corresponde a tornar \phi,p operadores num espaço de Hilbert tal que [\phi, p]=i. O estado da partícula será então descrito por uma função de onda que obedece à equação de Schrödinger H\psi=E\psi. Para p ser uma quantidade mensurável, é necessário que ele seja auto-adjunto. Certamente, se escolhermos uma representação em que p=-i\partial_{\phi} ele será hermitiano. Porém, para ser auto-adjunto ele temos que definir condições de contorno do tipo \psi(\phi+2\pi)=e^{i\xi}\psi(\phi) onde diferentes escolhas de \xi correspondem à situações físicas distintas que pode, em princípio, serem diferenciadas por experiências de espalhamento. Vale a pena fazer a conta da matriz-S para verificar isso por si próprio, é supreendente a importância das condições de contorno.

Vamos começar com o caso \xi=0. A solução do espectro nesse caso é simples:

\psi_m=e^{im\phi};\qquad E_m=\frac{1}{2M}(m-A)^2;\qquad m\in\mathbb{Z}

Se você conhece o efeito Aharanov-Bohm, vai notar que A nada mais é que um fluxo magnético de valor \theta=2\pi A. Inclusive, fazendo conexão como tópico anterior, acho que as primeiras pessoas a notarem a hoje óbvia descrição desse efeito através da holonomias de conexões em fibrados foi justamente Yang e Simons. Mas voltando, note que a ação correspondente a A será:

S_{top}=\int_{t_1}^{t_2}A\dot{\phi}=\theta\frac{\Delta\phi}{2\pi}

que só depende das posições iniciais e finais. Essa ação também conta quantas vezes a partícula deu a volta no círculo. Como é comum escrever \theta para o fluxo magnético, esse tipo de termo ficou conhecido como termo \theta, sobre o qual já falei várias vezes aqui.

Note ainda que \theta múltiplo de 2\pi não afeta o espectro e que para \theta múltiplo ímpar de \pi, o espectro é simétrico por paridade.

Uma pessoa mais ousada arriscaria dizer: “Esse termo A eu tiro com uma transformação de gauge (classicamente: trasnformação canônica) da solução”. Você pode até tentar, só que aí suas condições de contorno vão corresponder a \xi=-\theta que, como eu argumentei, é fisicamente distinta.

Um outro método de quantização é o de integral de trajetórias. Nesse caso, a ação do termo topológico fatora e a função partição euclidiana fica escrita como:

Z=\sum_{Q=-\infty}^{\infty}e^{i\theta Q}\int_{\phi(0)-\phi(T)=2\pi Q}\mathcal{D}\phi\,e^{-\int_0^T d\tau M\dot{\phi}^2/2}

para baixas temperaturas (ie, longos tempos euclidianos), só o estado de menor energia importa. Se considerarmos M\rightarrow 0, o estado de menor energia fica duplamente degenerado e esse estado passa a ser igual a uma partícula de spin 1/2. Não estou dizendo que essa é a origem do spin, não há nenhuma simetria SU(2) nesse problema, mas um modelo parecido com esse pode e é utilizado como uma teoria efetiva para (quasi-)partículas de spin 1/2 e, além disso, partículas de spin 1/2 são fermions e a origem das duas possíveis estatísticas em 3 dimensões – férmions e bósons – tem tudo a ver com esse tipo de análise topológica.

Termos \theta se multiplicam na física e eu acho que esse pequeno exemplo deu para ilustrar várias de suas características:

  • Realiza representações irredutíveis unitárias do grupo fundamental do espaço-alvo. Bem, não discuti isso, mas é por isso que o termo se chama topológico;
  • Responsável pela interferência quântica entre setores toplógicos. Note que quando escrevi a função partição após rotação de Wick (supondo que ela seja possível), a única superposição quântica residual é devido ao termo topológico;
  • Não afeta as equações de movimento;
  • Muda as condições de quantização do espectro quântico;
  • É um termo periódico, não quantizado contudo;
  • \theta=0,\pi possuem simetrias adicionais;
  • \theta=\pi implica em degenerescência do espectro;
  • Equivalente a uma mudança nas condições de contorno.

Claro que esse não é o único termo topológico possível. Para fazer conexão agora com o primeiro tópico que eu escrevi, no estudo de anomalias é bem relevante a ação de Wess-Zumino-Witten (é o termo de anomalia integrado), que também é um termo topológico. Há muitos outros, mas eles ficam para outra chance. (Se eu for cumprir todas essas continuações, não trabalho mais :P)


Ping-pong rápido:

  1. Eu, quando estava aplicando para os EUA, juntei nessa comunidade do orkut:

    GRE – Física (orkut)

    muita informação sobre o processo de vir estudar aqui com o intuito de ajudar as pessoas que querem mas não encontram ajuda, como foi meu caso. A realidade é que poucos alunos de física no Brasil tentam vir para os EUA. Acho que muitos não tentam não é porque não querem, mas porque não tem informações suficientes. Infelizmente, muita informação que estava na comunidade foi perdida ou está desatualizada. Mais do que isso, os mesmos motivos que estão fazendo a gente se mudar do orkut para o BC e para o AP, estão me motivando, junto com um colega brasileiro que também é doutorando aqui em Stony Brook, a criar um fonte mais acessível para essas informações. Manterei vocês atualizados. No entanto, eu sei que alguns colegas e leitores daqui estudam no exterior e, então, eu “convoco” vocês a divulgar mais as informações, de forma organizada, como é o processo de aplicação para ajudar as pessoas mais novas e incentivá-las a ir atrás de uma boa formação profissional.

  2. Está acontecendo no KITP/UCSB uma conferência sobre supercordas com vários cursos bacanas de coisas realmente modernas e atualizadas nessa área.

    Para quem quiser ver as palestras: Fundamental Aspects of Superstring Theory

    É uma conferência longa com várias palestras didáticas. Além disso, ela está comemorando o octagésimo aniversário do Stanley Mandelstam que teve um papel proeminente para o desenvolvimento dos primórdios dessa teoria.

Até a próxima.

Seguir

Obtenha todo post novo entregue na sua caixa de entrada.

Junte-se a 69 outros seguidores

%d blogueiros gostam disto: