Arquivo

Archive for quinta-feira, 12 mar 2009; \11\America/New_York\America/New_York\k 11

Velhas e novas evidências da matéria escura, e um pouco do lado negro da força

quinta-feira, 12 mar 2009; \11\America/New_York\America/New_York\k 11 10 comentários

Ilustração da situação do espectro de raios cósmicos. Com o lado negro da força no meio.

Ilustração da situação do espectro de raios cósmicos. Com o lado negro da força no meio.


Ah, terminado esse trimestre, dois seminários de cursos concluídos. Daí pensei em compartilhar com vocês o que eu aprendi para dar um desses seminários: os possíveis novos sinais (de outubro de 2008) da existência da matéria escura que vieram do satélite PAMELA e do balão ATIC. 🙂 Fica ai quem quiser… Primeiro eu falo sobre as velhas evidências, depois sobre as novas.

Coisas velhas

Já estava na hora de falar de matéria escura nesse blog. Essa história começou quando o Zwicky descobriu que a razão massa/luminosidade de galáxias espirais é pelo menos mais de 10 vezes maior que a do Sol. A luminosidade é uma medida da potência irradiada da luz (aquela em Watts), essa se mede diretamente na Terra. E a massa se acha utilizando a lei de Newton da gravidade para deduzir a distribuição de velocidades das estrelas nas galáxias. Mais tarde, Vera Rubin fez várias medidas precisas das velocidades das estrelas em várias galáxias espirais e obteve sistematicamente que a velocidade é mais ou menos constante mesmo longe do centro luminoso da galáxia (onde a maioria das estrelas se encontram). Isso só pode ser explicado no paradigma da gravitação de Newton se há uma distribuição aproximadamente uniforme de massa que se estende para bem além da galáxia visível (chamado halo de matéria escura).

Mas esse efeito não é, de repente, da Relatividade Geral? A resposta é não, por duas razões muito importantes. A primeira é que a velocidade das estrelas nas galáxias é tão pequena em comparação com a da luz que é válida a lei de Newton. E isso é possível ser quantificado com a aproximação pós-Newtoniana da Relatividade Geral, que é confirmada com enorme precisão nas medidas da NASA/CalTech da órbita das sondas espaciais e da Lua no Lunar Ranging Interferometer (saca só este artigo). A segunda é que mesmo a Relatividade Geral em toda a sua glória (resolvida exatamente, sem nenhuma aproximação) exige a matéria escura, por causa do diagrama de Hubble.

Qual é a desse diagrama? Na Relatividade Geral se calcula o valor do parâmetro de Hubble (que não é constante) em função da idade do universo em termos dos constituintes do universo: radiação, matéria massiva e qualquer outra coisa que você quiser colocar. A grande utilidade dessa variável cosmológica é que a dependência dela com a idade é distinta para cada diferente componente. P.ex. a matéria massiva contribui com uma potência (1+z)3 para H2, onde z é o desvio para o vermelho das linhas espectrais (quanto maior z menor é a idade do universo), mas a radiação contribui com (1+z)4, a energia escura contribui com \approx (1+z)^0 (constante) e por ai vai (err.. na verdade tem que fazer uma integral dessa série de potências… mas permita-me simplificar, ok?). Então é fácil saber quanto tem de matéria massiva no universo: medindo o valor de H em função de z utilizando diversos dados astronômicos, basta ajustar uma série de potência aos dados e extrair o coeficiente do termo adequado. Resultado: ~ 30% da densidade de energia do universo é matéria massiva. Mas isso não pode ser bárions ou léptons (prótons, nêutrons / elétron e neutrino), porque a abundância primordial de hélio-4, hélio-3, hidrogênio, deutério, lítio, boro e outros restringe que esse tipo de material só soma 4%-5% no máximo. Portanto, cerca de 25% da densidade de massa do universo é composta de algo desconhecido (a matéria escura).

Coisas novas

Há um modelo astrofísico no mercado que prevê o número de partículas como elétrons, pósitrons, prótons, etc. que devem chegar a Terra — os raios cósmicos — vindo de processos naturais de estrelas na galáxia, a versão mais sofisticada atual é do Igor Moskalenko (Stanford U) e Andrew Strong (Max Planck). Esse modelo faz um bom trabalho em prever quase todo o espectro de raios cósmicos de poucos MeV até 10 TeV (são aqueles que vem da nossa própria galáxia). Isso é visto com nitidez nas Figs. 1 e 2. Mas na Fig. 2 você vê que há uma lombada nos dados que o modelo perde. E na Fig. 3 você vê que o modelo está completamente fora. Qual a explicação para a lombada do ATIC na região de 300 – 800 GeV? E o excesso de pósitrons do PAMELA em comparação com o cálculo astrofísico?

Agora, outro ponto de informação interessante. O satélite INTEGRAL/SPI mediu uma emissão de luz que vem do centro da galáxia que é devida a reação elétron+pósitron->fótons. De onde vem esses pósitrons no centro da galáxia? Os dados do INTEGRAL já excluiram a possibilidade de supernovas. Até o momento os astrofísicos não tem idéia…

Espectro de antiprotons medidos pelo satélite PAMELA (Out 2008). As linhas correspondem a modelos, a sólida a um do tipo Moska&Strong.

Fig. 1. Espectro de antiprotons medidos pelo satélite PAMELA (Out 2008). As linhas correspondem a modelos, a sólida a um do tipo Moska&Strong.

Espectro de elétrons cósmicos na Terra medido pelo balão ATIC (Nature, Out 2008). A curva tracejada é o resultado do cálculo Moska&Strong somado com fontes pontuais astrofísicas de conhecimento do ATIC que estavam ativas no momento das medidas (a contribuição destas é exageradas nas curvas corloridas).

Fig. 2. Espectro de elétrons cósmicos na Terra medido pelo balão ATIC (Nature, Out 2008). A curva tracejada é o resultado do cálculo Moska&Strong somado com fontes pontuais astrofísicas de conhecimento do ATIC que estavam ativas no momento das medidas (a contribuição destas é exageradas nas curvas corloridas).

Medidas precisas do espectro de pósitrons cósmicos do satélite PAMELA. A linha sólida é o cálculo Moska & Strong. Esse gráfico não é tão bom quanto do ATIC porque PAMELA não incluiu (ainda) o fluxo previsto por qualquer fonte pontual temporária (diferente do ATIC).

Fig. 3. Medidas precisas do espectro de pósitrons cósmicos do satélite PAMELA. A linha sólida é o cálculo Moska & Strong. Esse gráfico não é tão bom quanto do ATIC porque PAMELA não incluiu (ainda) o fluxo previsto por qualquer fonte pontual temporária (diferente do ATIC).

A-Ha. Ai há uma janela de descobertas. Enquanto alguns se perguntam que mecanismo de aceleração de partículas carregadas foi esquecido (um pulsar, talvez) no modelo Moska&Strong, outros propõem que os excessos vistos por PAMELA, ATIC e INTEGRAL são da matéria escura. Dentro de um modelo genérico para a matéria escura conhecido por WIMPs (de weakly interacting massive particles, partículas massivas que interagem pela força eletrofraca), é previsto que na galáxia atualmente deve haver aniquilação de WIMPs com anti-WIMPs. WIMPs aparecem muitas vezes em modelos além do Modelo Padrão (que resolvem o chamado problema da hierarquia): dimensões extras, supersimetria (SUSY), Little Higgs, etc. Dentro do modelo de que existem mais dimensões espaciais no universo, mas que são grandes ~ 10-16 cm (i.e. TeV) em comparação com o comprimento de Planck, esses dados podem ser naturalmente explicados. Isso já havia sido mostrado na publicação original do ATIC na Nature, todavia há trabalhos mais detalhados disponíveis. Não tem muito jogo de cintura possível aqui porque a seção de choque de produção dessas partículas é fixada automaticamente pela densidade de matéria, e a escala de massa (embora não o valor exato) é fixada pela massa do bóson W.

O Modelo Padrão Supersimétrico Mínimo (MSSM) não consegue, por si só, explicar os dados do PAMELA. A seção de choque do MSSM fixada pela densidade de matéria escura observada astronomicamente precisa de um fator pelo menos de 30 para explicar o número de pósitrons observados. Dependendo de como você brinca com os parâmetros dos modelos supersimétricos, esse fator pode chegar a 100, 1000… 1010. Mas nem tudo está perdido para supersimetria. Fatores de 100 ou 1000 foram recentemente descobertos como esperados se você introduzir uma nova interação na teoria, que interage fortemente com a matéria escura, mas não com as partículas já conhecidas. Curiosamente, os dados do PAMELA e do ATIC sugerem que essa nova interação tem que ser leve em comparação com a escala TeV, digamos de poucos GeV de massa ou menos. Se essa nova interação escura for devida a uma partícula de massa da ordem de até 100 MeV, ela pode explicar a origem do sinal do INTEGRAL, porque permite um mecanismo no qual há uma pequena diferença de massa entre estados da matéria escura que é da ordem de MeV, e transições entre esses estados estão na região certa de energia para criar pares elétron-pósitrons (o par tem 1 MeV de massa). Com isso se explica tanto o sinal do PAMELA e ATIC, que exige uma partícula de matéria escura pesada > 600 GeV para produzir elétrons/pósitrons nas energias observadas, com o INTEGRAL/SPI que exige matéria escura ~ 1-100 MeV.

E então? Nova física? Novas partículas? Uma nova força que age apenas nas matéria escura portanto, uma força escura? 🙂

Citation Needed

  1. ATIC: J. Chang et al. (ATIC), Nature 456, 362 (2008).
  2. PAMELA: antiprotons, positrons
  3. Nova força escura: N. Weiner et al.; Katz & Sundrum Model para SUSY.
%d blogueiros gostam disto: