Início > Ars Physica, arXiv, cond-mat, gr-qc, hep-ph, Physics, Science > Buracos negros de laboratório

Buracos negros de laboratório

quarta-feira, 30 set 2009; \40\UTC\UTC\k 40 Deixe um comentário Go to comments

Analogia em Física

Não é só a boa prática de didática que se vale das analogias. A física também faz bom uso dessa idéia. Você sabia que é possível, por exemplo, estudar as leis de Newton debaixo d’água usando circuitos elétricos? Bom, mais ou menos. Acontece que a equação que descreve a quantidade de carga elétrica presente em um circuito com um capacitor, resistor e uma bobina (um indutor) é a mesma associada ao movimento de uma massa presa a uma mola na presença de um meio que provoca resistência. É claro que os símbolos presentes nessa equação nesses dois casos representam elementos da realidade diferentes. No movimento massa-mola, a função que aparece na equação é a posição da massa, e os coeficientes da equação são dados pela massa, a constante da mola e a viscosidade do fluido. No caso do circuito, a função é carga elétrica no capacitor e os coeficientes estão relacionados a bobina, capacitância e resistência do circuito. Em física se diz que o circuito é um análogo do sistema massa-mola imerso em um fluido.

Mais especificamente, a equação que descreve o movimento de uma massa m presa a uma mola de constante k levando em conta a resistência do fluido é
m\ddot{x} + \beta \dot{x} + k x = 0
Já a carga elétrica Q em um capacitor de capacitância C em um circuito formado por um indutor de indutância L e resistência R satisfaz a equação
L \ddot{Q} + R\dot{Q} + Q/C = 0.

Se as equações são as mesmas, então as soluções das equações também são as mesmas. O objetivo de estudar análogos é encontrar sistemas que são fáceis de serem construídos em laboratórios e suscetíveis ao controle do experimentador que sejam análogos de um sistema difícil de ser estudado em laboratório. Dessa forma, como as equações são as mesmas, isso permite ao menos dar uma confiança indireta, uma evidência, de que se uma certa teoria não foi testada em um certo regime apenas, mas descreve muito bem outros aspectos da Natureza, então se for possível encontrar um análogo que seja fácil de reproduzir em laboratório daquele regime não-testado, será possível ao menos verificar que as soluções matemáticas da teoria de fato admitem (ou não) um determinado comportamento. Se usarmos um circuito para representar uma massa presa a uma mola em um fluido, não seremos capazes de testar se as leis de Newton descrevem corretamente o movimento da massa mas se assumirmos que ela descreve, podemos testar as soluções da teoria de Newton.

Claro que no caso da teoria de Newton essa tarefa é trivial, porque nós podemos testar a teoria de Newton diretamente. Basta colocar uma massa presa a uma mola dentro de um tubo transparente cheio de água e usar um cronômetro para medir o deslocamento em função do tempo da massa. É quando a teoria que temos não nos permite testes em laboratórios que os análogos se tornam realmente importantes.

Construindo buracos negros em laboratórios

Imagem em raios X colorida artificialmente do satélite Chandra da NASA de Sagitário A*, o buraco negro no centro da Via Láctea.

Imagem em raios X colorida artificialmente do satélite Chandra da NASA de Sagitário A*, o buraco negro no centro da Via Láctea.

Um grupo de Dartmouth College nos Estados Unidos, Paul Nation, Miles Blencowe e Alex Rimberg junto com E. Buks de Technion em Israel, mostrou como construir um análogo de um buraco negro. Nesse caso não apenas é possível obter equações análogas ao horizonte de eventos como também o processo de criação de pares de partículas-antipartículas do vácuo que provoca a radiação Hawking! Como a radiação Hawking de buracos negros é muitíssimo fraca, associada a uma temperatura da ordem de 10-10K, é improvável que seja possível medi-la diretamente e logo análogos se tornam preciosos.

O análogo proposto pelo grupo funciona da seguinte forma. Primeiro, você considera uma série de vários elementos de circuitos supercondutores em série chamados de SQUIDs. Esses elementos são usados para medir variações minúsculas em campos magnéticos, campos que podem ser tão pequenos quanto 10-18 T — para uma comparação, o campo magnético da Terra é da ordem de 50×10-6 T. Além disso, você passa um pulso eletromagnético de microondas que vai se propagar através da cadeia de SQUIDs. Se você tiver um número suficientemente grande de SQUIDs em cadeia — da ordem de 2 mil –, você pode aproximar a equação que descreve a variação da corrente ao longo do circuito por uma equação que descreve algo parecido com uma onda. Uma vez que temos uma equação desse tipo, é possível escreve-la em uma forma que representa a equação de movimento de um campo escalar na presença de um campo gravitacional. Isso é possível graças ao fato de que, devido ao princípio da equivalência, um campo gravitacional é equivalente a uma geometria do espaço e do tempo. Sendo assim, quando você escreve a equação de movimento de uma onda em um dado espaço-tempo, essa equação vai depender da geometria — o movimento da película vibrante de um tambor depende se você curva ou não o material. Paul Nation mostrou que essa equação de onda para a corrente elétrica no circuito interpretada como a equação de um campo escalar na presença de um campo gravitacional, coincide com uma “fatia” da equação de um campo escalar na presença de um buraco negro. Essa fatia corresponde a coordenada do tempo como medido por um observador que cai em direção ao buraco negro.

É o pulso eletromagnético que se propaga ao longo da cadeia que define o “horizonte de eventos”. Nesse caso, as flutuações quânticas do campo eletromagnético permitem a criação de um par de fótons que acompanha o pulso. Esse par de fótons que se propagará ao longo da cadeia representa o análogo da radiação de Hawking.

Infelizmente ainda não é possível montar o equipamento proposto porque até o presente momento o número máximo de SQUIDs que podem ser colocados em cadeia é da ordem de centenas. Aparentemente é impossível no presente momento construir uma cadeia tão comprida quanto a necessária para realizar a idéia (não me pergunte por quê…).

Uma vantagem imediata da realização do circuito de SQUIDs é que a temperatura da radiação Hawking produzida é da ordem de 100 mK, e como SQUIDs são operados a poucos mK, o efeito é muito superior a qualquer flutuação térmica presente no circuito, o que é importante porque a radiação Hawking é quase-térmica, portanto difícil de ser distinguida a qualquer temperatura maior que a temperatura do buraco negro. Como é igualmente possível medir os dois fótons da radiação (o que está fora do horizonte e o que está dentro), é possível distinguir experimentalmente o sinal da radiação Hawking de um sinal espúrio fazendo medidas correlacionadas de dois fótons com a mesma freqüência. Isso permite descriminar claramente a radiação Hawking de qualquer outro fenômeno térmico ocorrendo no material.

Além disso, o grupo notou que existe um limite controlável do experimento em que a fase de propagação da onda através da cadeia pode tornar-se quântica. Em última análise, todo o sistema é descrito pela mecânica quântica, mas mantendo um certo limite sobre as freqüências utilizadas, é possível manter o valor do fluxo do campo magnético através do SQUID essencialmente clássico. Isso corresponde em termos da mecânica quântica a manter a dispersão do valor médio do fluxo do campo muito pequena em comparação ao valor do campo. Mas se essa dispersão (a flutuação quântica) for próxima ao valor médio, a aproximação clássica deixa de valer e as correções da mecânica quântica se tornam relevantes. Dessa forma é possível reintroduzir flutuações quânticas no parâmetro que define a equação de onda que é o análogo do campo gravitacional. Assim, é possível introduzir um análogo de flutuações quânticas do campo gravitacional e testar a robustez do cálculo de Hawking (que despreza as flutuações quânticas do campo gravitacional). Isso no sentido de que é possível parametrizar livremente o tamanho dessas flutuações e responder a seguinte pergunta: podem os desconhecidos efeitos quânticos da gravitação alterar substancialmente a validade da conta da radiação Hawking? Se sim, quão grande esses efeitos devem ser para invalidar o tratamento clássico do campo gravitacional? Essas são ambas perguntas bem interessantes para entender melhor a gravidade.

Posts relacionados:

  1. Nenhum comentário ainda.
  1. No trackbacks yet.

Deixe uma resposta

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: