Arquivo

Archive for the ‘pesquisa’ Category

Notícias da Semana…

sábado, 7 abr 2012; \14\America/New_York\America/New_York\k 14 Deixe um comentário

Nos últimos 7–10 dias, muitas notícias interessantíssimas apareceram. E vale a pena dar uma olhada no que está circulando pelo mundo afora.

  1. Brazil a Great Place to do Physics … and Other Things“: Esse primeiro link é sobre programa de intercâmbio da APS, e o caso da reportagem conta sobre um aluno que saiu da Columbia University, em NY, e foi para o CBPF, no RJ. Como diz o rapaz que fez o intercâmbio, “Given that Rio was one of Richard Feynman’s favorite places, I was sure the experience would be very interesting, and I quickly became excited about it.”. 🙂
  2. Brown University forges research partnership in Brazil“: Esse segundo link é sobre a parceria que a Brown University assinou nessa semana com o IMPA (RJ). A parceria, promovida pela doação de um pai dum aluno da Brown, vai promover a colaboração em pesquisas, conferências e intercâmbios entre a Brown e o IMPA pelos próximos três anos.
  3. Open grad program allows students to pursue two fields“: Esse terceiro link é sobra um programa piloto que a Brown abriu esse ano e que poderia ser resumido como “Ciências Moleculares para a pós-graduação”. A Brown tem um currículo de graduação aberto, como o do Ciências Moleculares, desde os anos 70. E, agora, eles decidiram aplicar o mesmo princípio para a pós-graduação. A idéia é de que os alunos selecionados para participar desse experimento irão cursar seus respectivos doutoramentos, que será complementado com um mestrado em alguma outra disciplina. (A Brown permitia que seus alunos tirassem um ‘double-masters’, i.e., um duplo-mestrado até alguns anos atrás, quando essa opção foi cancelada em favor dessa nova empreitada multi- e inter-disciplinar.) E é disso que trata a reportagem, desse experimento em se ter um currículo multi- e inter-disciplinar na pós-graduação. Até onde eu conheço, essa é uma atitude completamente pioneira e que não existe em nenhuma outra escola. 😈
  4. How the Modern Physics was invented in the 17th century, part 1: The Needham Question“: Essa é a primeira parte (de um total de 3) de um blog convidado da SciAm, contando a história da Física moderna. Muito interessante.
  5. How Much Is a Professor Worth?“: Essa matéria do NYT trata do tópico de um novo livro que tenta comparar o salário de professores em diferentes países. Vale a pena ler pra ver em qual posição o Brasil se encontra, e como os diferentes países se comparam. Há muitos detalhes a serem analisados nessa questão todo… mas, de qualquer maneira, é um bom começo.
  6. Sociedade Brasileira de Física — Cortes no orçamento de ciência ameaçam futuro do Brasil“: o governo decidiu cortar o orçamento em cerca de 33% (comparado ao orçamento de 2010), entrando em rota de colisão com diversas conquistas recentes da política científica federal.
  7. Carnaval Is Over“: Seria esse o fim do milagre brasileiro? A FP faz uma lista dos vários fatores que influenciam essa questão.

Parcerias científicas internacionais, flexibilização do currículo da pós-graduação, história da Física, cortes do orçamento de ciência e tecnologia, e futuro econômico do país. Todas notícias relevantes e contemporâneas.

“E agora, José?”

Adivinha quem é…?

sábado, 1 out 2011; \39\America/New_York\America/New_York\k 39 Deixe um comentário

"3 Mosqueteiros"

Pra quem gosta de quebra-cabeças, e conhece os envolvidos na ‘descoberta’ do chamado Bóson de Higgs, fica essa dica do blog do Ian Sample: quem são esses personagens do livro Massive?

PS: Eu tenho mais dessas fotos… conforme os palpites forem aparecendo, eu ponho mais alguma(s). 😈

Uma visão da DPF2011…

sábado, 13 ago 2011; \32\America/New_York\America/New_York\k 32 Deixe um comentário

Conferência da Divisão de Partículas e Campos de APS…

segunda-feira, 8 ago 2011; \32\America/New_York\America/New_York\k 32 Deixe um comentário

Hoje (segunda-feira, 08-Ago-2011) começa a edição de 2011 da Conferência da Divisão de Partículas e Campos da American Physical Society.

O programa da Conferência pode ser encontrado no link de ‘Schedule’ da mesma.

Mais ainda, os “proceedings” da Conferência serão publicados através do eConf.

Há também uma página para a Conferência no Indico do CERN, DPF2011 @ Indico/CERN. (A razão pra essa duplicação de esforços está fora da minha alçada (coisas da dicotomia de se passar o tempo dividido entre duas insituições) — quando me chamaram pra ajudar na organização da DPF2011 esse tipo de decisão já havia sido tomada. :razz:)

De qualquer maneira, essa página no Indico contém links para os Resumos das palestras e posteres, índice dos autores e palestrantes. Em particular, nestas listagens e índices é possível se encontrar os PDF que já foram carregados para o servidor.

Eu e o Rafael estamos atendendo a DPF2011. Então, vcs podem esperar por twittadas, fotos, posts, etc, etc, etc… provavelmente não no estilo “cobertura ao vivo”, uma vez que tudo vai ser meio corrido, mas fica aí aberto o canal pra quem quiser fazer perguntas ou participar de alguma outra maneira. 😉

Fermi-LAT pode ter confirmado resultado do PAMELA

sexta-feira, 20 maio 2011; \20\America/New_York\America/New_York\k 20 1 comentário

Hoje a Physics World reportou que a colaboração Fermi-LAT fez uma divulgação preliminar durante um congresso de que eles podem ter confirmado o excesso de pósitrons nos raios cósmicos que atingem a Terra na região de 10 a 100 GeV observados pelo PAMELA. Esse resultado é do mais confuso, porque o Fermi-LAT não observa tal excesso para os elétrons.

 Espectro de pósitrons cósmicos do satélite PAMELA.

Espectro de pósitrons cósmicos obtido pelo satélite PAMELA. A linha sólida é o cálculo Moska & Strong. Não incluido o fluxo previsto por fontes pontuais temporárias.

Muitas pessoas irão falar que esse excesso pode ser explicado com processos astrofísicos comuns, mas isso tem que ser visto com muito ceticismo porque genericamente qualquer processo de aceleração clássico deveria gerar um espectro de potência que diminui com o aumento da energia dos pósitrons, como 1/En para n > 0. Porém, o PAMELA, e agora o Fermi-LAT, observam um crescimento do número de pósitrons de 10 a 100 GeV, o que contradiz intuitivamente a possibilidade do excesso vir de aceleramento astrofísico. Além disso, por que o processo astrofísico iria acelerar pósitrons nesta energia mas não os elétrons?

Como a Ciência escapou da Foice do Orçamento — até agora…

segunda-feira, 9 maio 2011; \19\America/New_York\America/New_York\k 19 1 comentário

O original, pode ser encontrado aqui: How Science Eluded the Budget Ax — For Now (DOI: 10.1126/science.332.6028.407).

É importantíssimo de se colocar esta notícia em comparação não só com os cortes oçamentários americanos, mas também com os cortes brasileiros: Brazil cuts its science budget, Brazil’s budget cut dismays scientists. De fato, duas comparações bastante interessante são as seguintes: percentual do corte orçamentário (o Brasil cortou o orçamento de Pesquisa e Desenvolvimento em ~13%), e proporção do investimento em Pesquisa e Desenvolvimento em relação ao PIB (o Brasil investe ~1.25% do PIB em Pesquisa e Desenvolvimento).

É dentro deste contexto que a crise econômica mundial foi apenas uma “marola” no Brasil…

When details of the 11th-hour budget compromise that kept the U.S. government running emerged last week, it became clear that science programs fared relatively well. True, most research agencies will have less to spend this year than they did in 2010 (see table), and the totals generally fall well short of what President Barack Obama had requested when he submitted his 2011 budget 14 months ago. But the legislators and Administration officials who struck the spending deal managed to slice $38.5 billion from a total discretionary budget of $1.09 trillion without crippling research activities. How did that happen?

US Research Funding Budget

First and foremost, both Republicans and Democrats were working off a quiet but powerful consensus on the importance of science to economic prosperity. Last fall, Congress authorized steady increases for three key science agencies in a renewal of the America COMPETES Act, and Obama’s recent statements on the 2011 negotiations emphasized the need to continue investing in clean energy and medical research as the overall budget is cut. Second, Senate Democratic leaders had crafted a spending plan in March that, although it failed to pass the full Senate, showed how it could be done. Finally, the so-called cardinals, who chair the 12 appropriations panels in the House of Representatives and the Senate that oversee every federal agency, found ways to protect research while trimming other programs to satisfy the deal’s bottom line.

“There was no magic to it,” explains Representative Frank Wolf (R–VA), whose panel has jurisdiction over the National Science Foundation (NSF), NASA, and the National Oceanic and Atmospheric Administration and the National Institute of Standards and Technology within the Commerce Department. “Science has been a priority for me and the other longtime members of the committee because you’re talking about jobs and about helping America maintain its economic leadership,” says the veteran legislator, who entered Congress in 1981. “There has not been any controversy about this.”

His appropriations counterpart, Senator Barbara Mikulski (D–MD), says she hopes that consensus will translate into “smart cuts that don’t cost us our future. I support science funding that can spur American discovery and ingenuity to create jobs for today and jobs for tomorrow.”

Of course, a passion for science wouldn’t have been enough to carry the day without the numbers to back it up. That’s clear from the actions of the commerce, justice, and science (CJS) panels that Wolf and Mikulski lead.

In February, the Republican-led House passed H.R. 1, which slashed $61 billion from current federal discretionary spending. For Wolf’s spending panel, that translated into $8 billion less than the committee dispensed in 2010. Divvied up among dozens of agencies, the $52.7 billion number forced Wolf to cut $360 million from NSF’s $6.87 billion budget, for example, and $600 million from NASA’s $18.7 billion budget.

In contrast, the 2011 spending plan devised by Senate Democrats gave Mikulski’s CJS panel $53.6 billion to work with. That $900 million difference allowed Mikulski to be kinder to the research agencies under her jurisdiction. It pared $75 million from NSF’s budget and even provided a slight boost to NASA.

“Nineteen billion dollars was authorized, and $19 billion is what I put in my appropriations bill,” Mikulski said at a hearing last week on NASA’s 2012 budget request, referring to both a reauthorization of NASA programs that was enacted last fall and the Senate plan for 2011. “But my [spending] bill died, so NASA won’t get $19 billion.”

The 8 April budget agreement resulted in a CJS allocation of $53.3 billion for each panel. And although that figure is a bit lower than the earlier Senate version, it was enough to turn the two chairs’ support for science into fiscal reality. The Senate bill was a “guide-post showing what could be done within that allocation level,” says a senior staffer at one federal research agency. “Having the Senate offer a road map made a huge difference.”

Wolf says he was happy to be able to deliver most of what science lobbyists had sought for agencies within his jurisdiction. “I thought science ended up pretty well,” Wolf says about the final bill, pointing out that it ranked with the FBI’s fight against global terrorism as his top priority. In contrast, federal support for local and state law enforcement assistance took a big hit, as did other Justice Department programs.

Mikulski believes she did the best she could under the circumstances. But she isn’t happy with the fate of NASA, which employs thousands at its Goddard Space Flight Center outside Washington, D.C., in suburban Maryland. “NASA won’t even get the $18.7 billion it got in 2010,” she said at last week’s hearing. “Simply put, NASA will be cut more.”

With the 2011 budget finally put to bed, Congress is turning to the budget for the 2012 fiscal year that begins on 1 October. In addition to the political bickering over how to reduce a $1.5 trillion annual deficit, legislators will have to deal with the domino effect of the 2011 cuts, as activities that needed increases this year to remain on schedule will be delayed. NSF’s final budget, for example, cuts $48 million from its request to continue building a half-dozen major research facilities, including the newly launched Ocean Observatories Initiative and the National Ecological Observatories Network. A shrunken 2011 budget also means even bigger headaches for NASA’s troubled James Webb Space Telescope.

Striking a positive note, Mikulski told NASA Administrator Charles Bolden last week that “NASA will need to work harder and smarter to accomplish its inspiring mission within a smaller budget.” Wolf was less sanguine. Asked what scientists should do to maintain support for federally funded research in these fiscally stringent times, he offers a one-word strategy: “Pray.”

O que provocou a inflação?

quinta-feira, 5 maio 2011; \18\America/New_York\America/New_York\k 18 2 comentários

Dia sim, dia não, aparece um artigo no arXiv especulando sobre modelos específicos da inflação, e hoje mesmo apareceu um especulando sobre inflação advinda da QCD. Sabe-se pouco sobre a inflação, mas uma coisa que se sabe é o seguinte: o que causou a inflação não foi nada dentro do Modelo Padrão.

Para ocorrer inflação só é necessário um ingrediente: um campo escalar que seja a principal componente de energia do universo. Os demais requisitos são fáceis de ajustar: você sempre pode considerar uma região do espaço suficientemente pequena em comparação com as possíveis anisotropias desse campo dentro do qual a inflação ocorre, e sempre pode fazer o campo escalar decair a partir de um certo instante de tempo acoplando-o a outros campos. O que mais se tem na física de partículas são campos escalares neutros com acoplamento a outras partículas mais leves, então é fácil construir vários cenários com pións, kaons, Higgs…, você escolhe!

Mas nenhum desses pode estar certo. Isso é porque a principal função da inflação cosmológica (e a principal evidência de que ela ocorreu) é gerar a distribuição de probabilidades das anisotropias do universo. Uma vez que consideramos um campo escalar qualquer, o tamanho das anisotropias da radiação cósmica de fundo requerem que o parâmetro de Hubble na época da inflação seja de

H_* = \sqrt{\epsilon_*} \times 2.24(10)\times 10^{13} \; \text{GeV}

Ainda não é possível medir \epsilon_* com precisão, porém dentro de suposições razoáveis os dados do WMAP indicam este parâmetro deve ser da ordem de 10-2 (o valor exato depende do modelo usado para ajustar os dados). Isso sugere que durante a inflação, o parâmetro de Hubble era da ordem de 1012 GeV. Seja lá o que causou a inflação, espera-se que a física dessa escala de energia receba correções de efeitos de uma escala de energia M ainda mais alta. Então nós não podemos esperar que nenhuma teoria que recebe correções de efeitos físicos com M < 1012 GeV possa ter relação com a inflação cosmológica, como é caso de todos os campos do Modelo Padrão. Certamente você pode ajustar finamente que essas correções desapareçam, mas não há nenhuma boa motivação para isso. Dado o valor de H_* a densidade de energia durante a inflação deve ser da ordem de 1016 GeV, então um palpite mais razoável é que a inflação ocorreu devido a algum processo associado a essa escala, que pode ser algo como alguma unificação supersimétrica das forças fundamentais, ou o áxion se você olhar para o fato que M do áxion coincide com H*.

O Movimento dos Jovens Acadêmicos…

terça-feira, 26 abr 2011; \17\America/New_York\America/New_York\k 17 Deixe um comentário

O original, pode ser encontrado aqui: The Young Academy Movement (DOI: 10.1126/science.1206690).

I have often argued on this page that scientists need to do more than simply advance their individual research projects. Maintaining excellence in the global scientific enterprise will require constant adjustments to policies and programs. In addition, much more outreach by scientists will be needed to make science better understood by the general public and by governments. Promising progress toward both of these goals comes from a movement that is forging new organizations of young scientists—the “young academies”—around the world. A few weeks ago, a new international organization, the Global Young Academy, held its initial meeting in Berlin to discuss spreading the idea to many more nations (www.globalyoungacademy.org). This effort deserves full support from of all of society.

In 2000, a new type of organization, Die Junge Akademie (the Young Academy), was created as a joint venture by two German academies. This Young Academy was described as “an organization intended to harness the resources of both academies in ways that would fertilize research fields with new ideas and bolster career pathways, as well as invigorate older academies by involving the young scientific community in critical policy-related work.”* In 2005, a similar Young Academy was established in the Netherlands. The success of these two experiments has recently inspired six other nations to create their own Young Academies: Egypt, Nigeria, Pakistan, Sudan, Thailand, and Uganda; all nations where the tolerance and rationality inherent to science will be invaluable.

I see this empowerment of young scientists as the next step in a process that began in 1993 in New Delhi, when the national academies of sciences from more than 60 nations came together to develop a coherent scientific position on world population issues in preparation for the major 1994 United Nations International Conference on Population and Development in Cairo. This first-ever meeting of the world’s science academies soon created the InterAcademy Panel (IAP), now a vibrant global network of more than 100 member academies (www.interacademies.net). The IAP functions as a mutual support organization for the existing science academies around the world.

But the empowerment of national science academies with distinguished, well-established members can leave a gap between these influential organizations and the young, dynamic scientists who represent the future in each nation. This is precisely the gap that has been filled by the Young Academies: each a group of fewer than 200 scientists, typically selected by their national science academies to serve in 4-year leadership roles. Through its connection to a prestigious national science academy, each Young Academy is empowered to exert national leadership in advancing science through projects that the young scientists themselves determine. These young scientists can often be more effective than their older peers in interactions with society and with politicians. They also bring new energy to these interactions, with a better gender balance due to the advances that women scientists have made in recent decades.

By bringing together outstanding scientists from many different disciplines, Young Academies catalyze the formation of multidisciplinary scientific collaborations that generate innovative new discoveries. Participation in a Young Academy also strengthens a nation’s scientific enterprise by training its next generation of leaders. The work exposes them to important policy issues while building networks of trusted personal relationships that can bridge disciplines for a lifetime. And by providing a shortcut for outstanding young scientists to exert national leadership, Young Academies can be highly effective in recruiting a nation’s most talented students to scientific careers—a critical issue for the future of every nation.

By fusing the promotion of the larger goals of science with an integration of young scientists into public service, the Young Academy movement is well positioned to drive the creation of the tolerant, rational societies that the world so badly needs.

O universo é quântico II, novas divergências em TQC

terça-feira, 5 abr 2011; \14\America/New_York\America/New_York\k 14 5 comentários

Será que existem divergências em teorias quânticas de campos (TQC) em espaços-tempo curvos que não podem ser removidas por renormalização?

Como o título já deve dar a entender, esse segundo post já vai ser sobre um aspecto técnico.

Leia mais

Quando chega a hora de questionar a bioengenharia?

segunda-feira, 28 mar 2011; \13\America/New_York\America/New_York\k 13 4 comentários

Wow. Esta palestra é de assustar…

Da TEDxPeachtree, Paul Wolpe, especialista em bioética, lista alguns dos experimentos contemporâneos que modificaram seres vivos e exploraram as mais diversas manipulações de organismos… de cérebros mantidos vivos para controlar robôs a mariposas controladas por controle remoto.

Quem colapsou a função de onda do universo?

segunda-feira, 28 mar 2011; \13\America/New_York\America/New_York\k 13 2 comentários

Como ninguém perguntou no último post 😦 faço eu aqui a pergunta. Existe uma dificuldade conceitual na idéia da origem da estrutura do universo.

Para explicar o problema, deixe-me considerar o caso dos fótons da radiação cósmica de fundo. A temperatura média observada desses fótons é 2.73 K. Essa média é obtida da seguinte forma: o satélite recebe um conjunto de fótons vindos da direção n da abóboda celeste. Cada fóton recebido por unidade de tempo tem uma temperatura diferente; mas somando todos os fótons ao longo de um tempo t suficientemente longo, é possível determinar com uma precisão menor que 1 mK qual a temperatura dos fótons vindo daquela direção, chamemo-la T(n). Como eu disse, prever o valor exato da função T(n) é impossível porque requer saber exatamente qual a posição da Terra em relação ao ponto exato no espaço onde ocorreu o último espalhamento Compton que o fóton sofreu antes de chegar no satélite. No lugar disso, se faz a média T0 sobre todos os pontos da esfera celeste, ou seja, sobre todas as direções n. Essa média independe da direção. Esse é o valor 2.7 K. Nós podemos definir o desvio da média: ΔT(n)=T(n) – T0. A média do desvio da média é zero, mas não é zero a média do produto de dois ΔT(n), isto é o desvio padrão da média. Isso é análogo em mecânica quântica ao fato que a média da posição X pode ser zero, enquanto o mesmo não vale para X2.

A idéia proposta por Mukhanov e Chibisov é que essa média do céu é igual a mesma média obtida em mecânica quântica para a mesma variável. A dificuldade conceitual é que essas duas médias tem significados diferentes. A da mecânica quântica (MQ) significa o seguinte: você prepara o universo para ter início quando o tempo é zero em um estado \Psi, e mede a temperatura dos fótons na direção n em 12 bilhões de anos depois, o que te dará um valor T(n). Você então precisa colocar o universo novamente no estado \Psi no início e medir novamente T(n) 12 bilhões de anos depois, que vai lhe dar outro valor, e assim por diante. Uma série de medidas em vários universos diferentes é a média da MQ. Já a média utilizada na teoria clássica é de um mesmo universo sobre diferentes direções. Poder-se-ia questionar que quando a função de onda do nosso universo colapsou, a distribuição do campo gravitacional congelou em uma configuração específica da mecânica quântica. Essa configuração, tirada uma média sobre o espaço, é que constitui os observáveis astronômicos, e não a média sobre todas as possíveis realizações das flutuações do campo gravitacional, que é a média da física quântica. Mais objetivamente, como, quando e por que as probabilidades quânticas, como o emaranhamento, deixaram de ser flutuações quânticas do campo gravitacional e passaram a ser flutuações clássicas de intensidade do campo gravitacional? Será que toda vez que eu observo um fóton na radiação cósmica de fundo, eu colapso a função de onda de todo o universo? 🙂

O universo é quântico I

sexta-feira, 25 mar 2011; \12\America/New_York\America/New_York\k 12 4 comentários

A gravitação quântica pode estar ali na esquina…

Este vai ser o primeiro do que eu espero ser uma série de posts sobre os recentes avanços em cálculos de gravitação quântica em Cosmologia. Serão em tom de divulgação, mas com alguns detalhes técnicos aqui e ali. Eu não vou me preocupar em dar detalhes de referências no texto porque toma tempo e quem tiver interesse é só procurar ou perguntar. 🙂

Essa história começa com o seguinte problema. Suponha que eu aqui na Terra com um telescópio queira saber toda a evolução que trouxe a sopa primordial do universo até a formação de todas as galáxias:

 

A distribuição das galáxias no céu visto da Terra depende da posição relativa da Terra as galáxias vizinhas, o que nenhuma teoria cosmológica pode nos dizer. O que nós podemos calcular são na verdade aspectos probabilísticos do universo, como a densidade de massa média em um volume que contém muitas galáxias, ou o número de galáxias a uma dada distância d de outra galáxia. Olhando cada galáxia nas figuras dos telescópios e determinando quantas galáxias estão ao redor dela a uma certa distância d e depois tirando a média dessa quantidade para todas as galáxias vistas no telescópio pode-se tirar um estimador aproximado de como as galáxias estão distribuídas, e então comparar essa função de d com uma previsão da física.

Naturalmente, a física clássica não pode fornecer essa previsão: não faz parte do arcabouço conceitual clássico o conceito de probabilidades associadas aos observáveis físicos. As equações da Relatividade Geral para um fluido como a matéria escura, uma vez dadas as condições iniciais, tem uma evolução futura única. Quando os cosmólogos nos anos 60 toparam com essa questão, a estratégia foi introduzir artificialmente variáveis aleatórias no problema. Então, por exemplo, se A(\mathbf{x}, t) é um observável cosmológico (como a massa que existe no universo), os cosmólogos passaram a escreve-lo assim:

A(\mathbf{x}, t) = \sum_n \alpha_n(\mathbf{x}) A_n (t)

onde A_n(t) é cada uma das possíveis evoluções temporais da Relatividade Geral (t é o tempo) e \alpha(\mathbf{x}) é uma variável estrangeira a teoria que tem algum tipo de distribuição de probabilidade para como o observável se distruibui no espaço, por exemplo:

\langle\alpha_n \rangle = 0
\langle \alpha_n \alpha_m \rangle = P_{nm}

etc., onde \langle O \rangle quer dizer que estamos calculando o valor médio da variável aleatória O com respeito a alguma lei de probabilidade (por exemplo, no problema de um dado não viciado, cada face pode ter uma regra de probabilidade 1/6, e nós poderíamos definir a média de cada face \langle\alpha_i\rangle = 1/6, e a chance de tirar duas faces iguais \langle\alpha_i\alpha_j\rangle = (1/6)\times(1/6)). Na física clássica não existe nada que possa nos dizer a priori qual a distribuição de probabilidades (a não ser um chute!). (Na verdade a distribuição é feita no espaço de Fourier e não sobre o espaço-tempo).

A solução desse problema foi proposta em 1981 pelos russos Viatcheslav Mukhanov e Gennadiy Vasilevich Chibisov, então do Instituto de Física Teórica de Lebedev. Muita gente também dá crédito aos físicos do ocidente que puxaram a descoberta no contexto do modelo inflacionário logo em seguida: Stephen Hawking, Alan Guth e So-Young Pi, James Bardeen, Paul Steinhardt e Michael Turner.

Mukhanov e Chibisov fizeram um cálculo proposto a eles pelo colega Starobinsky: computar as flutuações quânticas do campo gravitacional em um modelo cosmológico proposto por Starobinsky. A suspeita era que os efeitos poderiam ser “grandes” e invalidar todo o modelo cosmológico. O que Mukhanov e Chibisov encontraram é que a distribuição de probabilidades do campo gravitacional quantizado no modelo de Starobinsky era idêntica a distribuição de massa do universo que acreditava-se na época ser necessária para garantir a formação das galáxias no modelo do Big Bang (apesar de que a distribuição de galáxias ainda não tinha sido observada em 1982!). Ora, se a fórmula é idêntica, a física deve ser a mesma: eles propuseram então que a origem da distribuição das galáxias era a gravitação quântica no universo primordial. A solução é muito elegante, pois promover os observáveis cosmológicos a observáveis em mecânica quântica permite associar a eles distribuições de probabilidades de forma natural. Mais importante, permite prever a distribuição de probabilidades do universo.

Hoje em dia a idéia é assim: o universo começou no vácuo, e passou por um período em que as distâncias entre dois pontos cresceram exponencialmente — a inflação. As flutuações quânticas do vácuo são pequenas, mas durante o período inflacionário elas são esticadas de um tamanho de 10-25 cm (cem bilhões de bilhões de vezes menor que o próton) até ao tamanho de uma galáxia. Essa flutuações querem dizer que a intensidade do campo gravitacional não é a mesma no espaço, o campo gravitacional tem uma probabilidade associada a ele de ter valores diferentes, igual como as probabilidades associadas a posição do elétron no átomo de hidrogênio. Os picos e vales de intensidade do campo gravitacional são essas flutuações. Eu já tinha escrito sobre isso no blog aqui.

Mas como é possível que o formato do campo gravitacional quântico no universo primordial possa ter dado origem as galáxias, se a inflação aconteceu mais de 100 milhões de anos antes das galáxias começarem a se formar? A física posterior a inflação não iria bagunçar o campo gravitacional do universo, como por exemplo, através de transições de fases, ou as colisões de prótons a altas energias, ou a formação do plasma de quarks e gluons?

Devido a inflação, essas flutuações se tornam tão grandes — do tamanho de uma galáxia! — que elas são muito maiores que a distância que a luz pode percorrer durante boa parte da história do universo. Quando o universo tinha 3 minutos, por exemplo, a distância que a luz pode percorrer desde o início do universo é de 3 minutos-luz; em comparação, uma galáxia tem cerca de 30 mil anos-luz de diâmetro. Só quando o universo já tinha mais idade que essas flutuações quânticas começam a ser influenciadas por outros efeitos físicos. Por uma boa coincidência de escalas, a temperatura do universo aos 3 minutos de idade era cerca de 1 MeV, que é a escala de energia típica da física nuclear, então esses outros efeitos que alteram a distribuição quântica primordial são física muito bem conhecida: física nuclear “para baixo”.

É curioso como se fala tanto que a física do LHC e do RHIC tem a ver com o Big Bang quando na verdade se sabe que qualquer efeito dessas escalas de energia não tem relevância para cosmologia.

Alguém ai entendeu alguma coisa?

No próximo post eu vou falar sobre os trabalhos recentes sobre as interações dos grávitons no universo primordial que afetam os observáveis cosmológicos, que em breve pode constituir um dos primeiros testes das interações da gravitação quântica graças ao satélite Planck. E depois sobre como se trombou com as diversas dificuldades da quantização da gravidade, e como a Cosmologia tem dado uma luz sobre como fazer contas com a Relatividade Geral quantizada.

Uma palestra técnica sobre o assunto você pode ver aqui, é o seminário “Cosmological Correlations” do Steven Weinberg. Já está desatualizada, mas eu não conheço nenhuma outra mais moderna.

As cidades mais científicas do mundo…

sábado, 19 mar 2011; \11\America/New_York\America/New_York\k 11 Deixe um comentário

O Physics arXiv blog publicou uma matéria interessante. Mas, antes de falar da notícia, eu tenho que avisar que não estou entre os maiores fãs desse blog — na verdade, minha opinião flutua bastante: alguns artigos são bons, outros ficam bem longe disso… mas, em todos os casos, o Physics arXiv blog é bem enviesado (a seleção dos tópicos que aparecem por lá deixa isso claro além de qualquer dúvida, isso pra não falar sobre o nível das discussões, sempre bem ‘passageiro’) — e isso sempre me incomoda muito.

De qualquer forma, e sem mais delongas… eis o artigo: Mashups Reveal World’s Top Scientific Cities. O original pode ser lido diretamente nos arXivs: Which cities produce worldwide more excellent papers than can be expected? A new mapping approach—using Google Maps—based on statistical significance testing.

A discussão no ‘Physics arXiv blog’ não passa de “mais do mesmo”: ciênci-o-metria. Infelizmente, perde-se a chance de se avaliar o artigo propriamente dito, escolhendo-se apenas notificar a “mensagem” contida no mesmo. Parece até mesmo um órgão de Relações Públicas, apenas alardeando e propagandeando.

O artigo propriamente dito é de tão baixa qualidade que a vontade que se tem é de apenas se repetir o adágio invisível, que diz que os artigos dos arXivs não escritos em [La]TeX são sempre de qualidade duvidosa — pior ainda quando são escritos em Word, ou algum editor de pior qualidade ainda; sem identação apropriada (quem ainda usa ‘identação à esquerda’, ao invés de ‘justificado’? :razz:): via de regra, a falta de atenção a esse tipo de detalhe num artigo costuma refletir a baixa qualidade do material escrito. Mas, como eu disse, esse é apenas um “adágio invisível”, uma unspoken rule, que não se vê, não se ouve, e cujo perfume não se sente. 😳 🙄

De qualquer forma, a máquina de salsicha continua na ativa: como se mensurar o imensurável: quais trabalhos científicos têm mais qualidade, quais são mais dignos de fomento, quais têm mais impacto na comunidade?

Todas essas são questões relevantes, claro, mas uma lição que a Ciência tem que aprender com a Arte é que a medição da criatividade é algo estupidamente difícil. Aliás, nem é preciso se apelar para o lado mais humanista desta questão: basta apenas se aprender Sistemas Dinâmicos corretamente (o que, de fato, parece ser algo tão complicado quanto nos dias de hoje). A razão deste meu argumento é bem simples: como se pode avaliar algo que possui resultados de médio a longo prazo (sem esperarmos por tal prazo)?

A resposta é simples: não é possível se avaliar nada que dependa de médio a longo prazo sem esperarmos tal prazo passar e medirmos o resultado efetivo do que se deseja avaliar. Ou seja, precisamos esperar o tempo passar pra podermos sequer ter a chance de sermos justos nesta empreitada! Ou seja, falando um pouco mais rigorosamente, é preciso termos acesso a todos os dados para podermos conhecer o problema de modo completo.

Infelizmente, com a idéia de que as Universidades devem ser “profissionalizadas” (sabe-se lá o que isso significa :razz:) e, mais ainda, de que toda a empreitada científica deve ser “profissionalizada”, todo esse tipo de questão métrica se torna relevante: como se pode escolher aquilo que há de “melhor” para se fomentar? Assim como numa empresa, numa linha de montagem, é preciso haver alguma forma de “selo de garantia”, alguma forma de “controle de qualidade”. (Note que não estou falando do processo de ensino de estudantes, mas sim de pesquisa científica — falar de ensino por si só abriria outra Caixa de Pandora!)

Entretanto, ao contrário de empresas, fábricas e linhas de montagem, Universidades e Pesquisa Científica [fundamental] possuem planos de ação, missões, de longo prazo, de longuíssimo prazo: há universidades com cerca de 1000 anos de existência: quantas empresas, fábricas e linhas de montagem podem dizer o mesmo?! A própria Revolução Industrial tem apenas cerca de 250 anos!

Felizmente ou não, esta é a natureza da busca pelo conhecimento, e este é o papel da Ciência, principalmente daquela dita fundamental (que costuma dar frutos bem distante das aplicações do dia-a-dia). Por outro lado, hoje em dia, na nossa Era da Informação, é possível se converter algo tão abstrato quanto Teoria dos Grafos em compiladores e navegadores. Este é o caminho da Ciência e do Conhecimento: a menos que se tenha acesso a toda informação, só se pode ver aquilo que está no curto prazo… 😉

Isso tudo só server pra fazer com qua a analogia posta acima — entre Sistemas Dinâmicos e Funções de Partição — fique ainda mais clara aos olhos: quando vc tem acesso à Função de Partição dum problema, vc tem em mãos toda a informação necessária pra resolver o problema completamente; no caso de Sistemas Dinâmicos, como o nome indica (dependência temporal), é muito difícil de se calcular o que vai acontecer no futuro (não-linearidades, caos, etc). E, no final das contas, tudo que se quer medir são os Fenômenos Críticos, as Transições de Fases, e as Propriedades de Escala do sistema em questão.

A mensagem é clara: sem uma visão mais global é impossível se poder qualificar e medir justamente um trabalho científico. Incontáveis exemplos, de Einstein à Wilson, todos nobelistas, jamais teriam os “índices” e os “fatores de impacto” necessários, hoje, para serem contratados em regime de ‘tenure track’ — isso é claro pra qualquer um que já tenha feito o exercício mental requerido por esta questão.

Algumas empresas e alguns nichos industriais já descobriram esse fato básico da natureza humana… aliás, no âmbito de Sistemas Dinâmicos tudo isso tem nome: Cisne Negro e Dragões Reis. 😈

Infelizmente, parece que esse aprendizado e essa mensagem ainda não chegaram na academia — um fato bem irônico, posto que a academia é o lugar onde tais idéias (transições de fase, cisne negros e dragões reis) nasceram! 😳 Então, por enquanto, nós ainda vamos nos debelando com índices e fatores de impacto e outras bobeiras afins. Eu gostaria que fosse feito um estudo com as revistas de maior impacto, procurando-se saber quantos dos artigos publicados nestas revistas deram origens a novos caminhos e novos ramos em seus respectivos campos da Ciência. Taí uma perguntinha bem capiciosa e que por motivos “mágicos” ainda ninguém teve a idéia de responder… 🙄 (Diquinha: eu não me lembro de Einstein ter publicado na Nature nem na Science, então nem as Relatividades nem a Mecânica Quântica (ou Teoria Quântica de Campos) tiveram suas origens nas revistas ditas de alto impacto; o mesmo vale, por exemplo, para as chamadas Transições Quânticas de Fase: o Kosterlitz não publicou numa revista de alto impacto — aliás, porque ninguém pergunta pro Kosterlitz o que ele pensa disso tudo, afinal de contas ele deu origem a todo um ramo da Física, logo deve saber o que significa “alto impacto científico”, não?! :razz:)

Pra finalizar, vou apenas me resignar a dizer que a análise estatística feita no tal artigo é de baixa qualidade, não apenas porque não leva em conta os cisnes negros e os dragões reis, mas também porque não leva em conta tantos outros métodos que a tornariam bem mais robusta. É uma pena, porque os “efeitos visuais”, os “efeitos especiais”, do artigo são bem bonitinhos… [bonitinhos mas ordinários! :razz:]

[]’s.

Atualizado (2011-Mar-19 @ 11:15h EDT): Ah… a ironia do destino. Assim que acabei de escrever o post acima, trombei no seguinte livro: Little Bets: How Breakthrough Ideas Emerge from Small Discoveries. O ponto do livro é clararamente exposto no título, mas também já foi feito por Asimov,

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not ‘Eureka!’ (I’ve found it!), but ‘That’s funny…'”

Isaac Asimov.

Experimentação, passo-a-passo, erros e mais erros… é assim que se faz Ciência: a idéia de que pesquisa e progresso é feito através duma seqüência de ‘acertos’, de passos corretos, não poderia estar mais distante da realidade… c’est la vie

O futuro da revisão-por-pares…

terça-feira, 8 fev 2011; \06\America/New_York\America/New_York\k 06 2 comentários

Depois da invenção dos arXivs, o problema de distribuição de publicações científicas foi efetivamente resolvido. Dessa forma, o papel dos jornais acadêmicos ficou essencialmente resumido à revisão-por-pares. Ou seja, no frigir dos ovos, o valor agregado que as jornais acadêmicos acrescentam aos artigos é apenas a revisão-por-pares, uma vez que a distribuição desses artigos não é mais problema na Era da Informação.

[N.B.: Pense em termos de uns 400 anos atrás, na época de Galileu: era preciso um manuscrito viajar de cavalo ou barco para que sua distribuição fosse efetivada. Claro que as coisas melhoraram com o correio moderno e com a invenção dos aviões… mas, no final das contas, o processo de distribuição continuava o mesmo em sua natureza: era preciso haver uma mudança física, mecânica, de um lugar para outro. Hoje em dia isso não é mais verdade: organizar, colecionar e distribuir artigos é uma tarefa essencialmente trivial: o exemplo dos arXivs sendo o mais gritante, e PLoS sendo um segundo exemplo. Infelizmente, eu não conheço nenhum esforço dessa natureza Free-Open Access nas Humanidades nem nas Ciências Sociais: seria muito interessante conhecer esforços nessas direções.]

Entretanto, atualmente há também um movimento para “aliviar” os jornais acadêmicos inclusive dessa atividade:

Felizmente (ou não 😛 ), esta não é uma idéia nova: esforços nesta direção já têm sido promovidos há anos. Vejam os exemplos abaixo,

Esses esforços costumam vir sob o nome de Ciência 2.0 — apesar de que, atualmente, já está se falando em Ciência 3.0!

[N.B.: Resumidamente, o “2.0” significa a incorporação das ferramentas de Web 2.0, enquanto que o “3.0” significa que metadata é usada de modo “decente” (ie, como a coisa foi designed para funcionar 😉 ).]

Mais ainda, há movimentos em direções ainda mais ambiciosas, como os abaixo,

Tanto o MathJobs quanto o AcademicJobsOnline têm o intuito de organizar e facilitar a busca de empregos (postdocs, professores, etc) em Matemática e Ciências em geral, respectivamente. Isso tem melhorado o processo infinitamente: antigamente, era preciso se escrever cartas de aplicação para diversas (até centenas!) e instituições; hoje em dia basta vc carregar seu material nesses sites e selecionar os empregos que vc gostou — o resto acontece automaGicamante. 😎

De fato, nossa Era Digital trouxe ferramentas absolutamente fantásticas, que conectam o mundo da pesquisa de modo nunca d’antes navegado… Claro, como toda espada, esta também tem dois gumes: o ‘lado negro’ de toda essa facilidade e conectividade é o atual campo da cienciometria, onde se acredita que é possível se mensurar “criatividade científica” através de índices que, na melhor das hipóteses, são apenas parciais (ie, são índices cujo significado estatístico é questionável).

Enfim, este é um momento bastante conturbado… mas que certamente não deixará “pedra sobre pedra”. 😉

This post translated to English (en_US) (courtesy of Google Translate).

Café científicos levando ciência para o público leigo…

terça-feira, 8 fev 2011; \06\America/New_York\America/New_York\k 06 3 comentários

Está aí uma iniciativa excelente que está demorando para go viral:

Os Cafés Científicos são uma idéia que, pessoalmente, eu considero brilhante: um cenário informal, relaxado, onde as pessoas podem ouvir algum palestrante falar sobre Ciência — e, melhor ainda, depois da palestra, debater sobre o que foi dito. Aliás, de fato, o foco é maior no debate do que na palestra propriamente dita: a idéia é passar a informação de modo bem objetivo e, depois, deixar a platéia guiar a discussão.

Quem faz Ciência sabe: deixar a curiosidade ( ❗ ) guiar o debate científico é uma das formas mais entusiasmantes de se fomentar a criatividade. Essas digressões tangenciais que aparecem a todo momento nesse tipo de discussão são fundamentais pra se ‘mapear’ o ‘espaço’ do assunto sendo atacado. Quem não conhece, pode achar esse approach meio caótico… mas, é um método excelente pra se obter uma ‘imagem’ do objeto em questão.

O realejo do dia…

quinta-feira, 27 jan 2011; \04\America/New_York\America/New_York\k 04 5 comentários

Será que é preciso mudar alguns paradigmas de Educação?

Algumas perguntas:

  • “O que o vídeo acima implica sobre a ‘logística escolar’ (como comparar a ‘linha de montagem escolar’ com a ‘linha de montagem da Toyota’)?”
  • “O que o vídeo implica para esforços de Open- e Free-Access?”
  • “O que o vídeo implica para estudos multi- e inter-disciplinares?”
  • “O que o vídeo implica sobre Science2.0 e 3.0?”
  • “O que o vídeo implica sobre as ‘propriedades de escala’ dos nossos sistemas de administração (educação, saúde, segurança, etc)?”

Muitos (senão todos) dos métodos que temos hoje sobre governança e administração evoluíram dos originais criados para administrar nações de cerca de alguns [poucos] milhões de pessoas — o que fazer, então, quando as nossas nações têm centenas de milhões de pessoas?! Será que esses mecanismos escalam de modo apropriado?

P.S.: Só pra apimentar: Why Our Best Officers Are Leaving — Será que estamos escolhendo e mantendo nossos melhores cientistas? Será que há problemas em comum com os relacionados neste artigo? Como este artigo se relaciona com o vídeo acima?

Robust Discretization Schemes…

quarta-feira, 26 jan 2011; \04\America/New_York\America/New_York\k 04 3 comentários

ResearchBlogging.org

Today, the following article came up on the arXivs:

This is all fine and dandy… but my question is: “How does this paper (above) compare to the following”:

That is, GR is naturally written in terms of [pseudo-]differential forms (aka tensor densities), so the methods described above should be very appropriate to attack the problem of discretizing the path integral in such a way as to retain its symmetries.

» Robert Oeckl (2005). DISCRETE GAUGE THEORY: From Lattices to TQFT World Scientific eBooks, 1-216 DOI: 10.1142/9781860947377

Miami 2010…

domingo, 12 dez 2010; \49\America/New_York\America/New_York\k 49 1 comentário

This week I will be at the Miami 2010, so I will try and “live tweet” the conference, with some comments and pictures — the hashtag will be #miami2010.

If anyone is interested, here’s the talk I am giving on tuesday (2010-Dec-14, right after lunch 😉 ),

😈

Updated (2010-Dec-15): Here are the notes to my talk, mostly of stuff that was said and is not in the PDF above,

Neurociência e o Projeto Ersätz-Brain…

quarta-feira, 8 dez 2010; \49\America/New_York\America/New_York\k 49 Deixe um comentário

ResearchBlogging.org

Bom pessoal, como anunciado anteriormente, vamos falar um pouco sobre um certo aspecto da Neurociência: o da modelagem de redes neurais via sistemas dinâmicos, modelo de Potts e, por que não, teorias de gauge (cf. What is a gauge?, Gauge theories (scholarpedia), Preparation for Gauge Theory e Gauge Theory (José Figueroa-O’Farrill)).

O nome-do-jogo, aqui, é Projeto Ersätz-Brain, e a idéia é a de se construir uma “arquitetura” análoga a de um cérebro para aplicações cognitivas. A base dessa arquitetura são as estruturas de audição e de visão do cérebro: ao contrário do que ingenuamente se imagina, ambas essas estruturas são altamente hierarquizadas e distribuídas. Ou seja, grupos diferentes (e espacialmente distribuídos) de neurônios lidam com ‘pedaços’ diferentes da informação sendo recebida, enquanto que um outro grupo de neurônios “integra” essas informações, numa camada hierárquica superior as anteriores.

Então, a motivação é a de se construir uma arquitetura distribuída e hierárquica — ou, no jargão que nós usamos, uma “rede [neural] de redes [neurais]”: ou seja, estamos dando um passo na direção da “recursividade” da arquitetura usual de redes neurais. Alguns chamariam tal passo de meta redes neurais” e outros de rede neurall Gödeliana, ambos os nomes aludindo à natureza auto-referencial da arquitetura: “redes de redes”.

Pra dar um exemplo concreto dum problema que estamos atacando atualmente, vamos pensar em termos do Código Morse: imagine que o nosso EB é como uma criança que ainda não aprendeu a falar e se pergunte: “Como é que uma criança aprende um idioma?” Agora vamos fazer de conta que o idioma não é uma das línguas faladas ao redor do globo, mas sim Código Morse… e, ao invés de termos uma criança, temos uma arquitetura de redes neurais, um EB. 😉

O que a gente pretende fazer é colocar um sinal de código Morse como dado de entrada para o EB e, do outro lado dessa “caixa preta”, tirar a mensagem descodificada. O EB tem que aprender código Morse e identificá-lo com os símbolos usuais do alfabeto, pra assim poder dar como saída a mensagem apropriada.

Quem está acostumado com o paradigma usual de redes neurais e Teoria de Hebb já deve ter percebido que esse tipo de approach não vai funcionar no caso do EB. A pergunta, então, se põe sozinha: “E agora, José?” 😉

O insight é não pensar em termos de “memória”, mas sim em termos de “dinâmica de informação”. Ou seja, ao invés de tentarmos ficar memorizando padrões em cima de padrões, pra depois associar a outros padrões, e assim por diante… a idéia é se notar que, assim como em Teorias de Gauge, há muita informação repetida e muito ruído nesse problema. Então, se Teorias de Gauge funcionam tão bem na Física… por que não tentar implementar um pouco delas em Redes Neurais?! 😈

É exatamente isso que estamos fazendo atualmente, criando um modelo para o EB em termos de Teorias de Gauge. Ou seja, há dois tipos de “dinâmicas” em jogo, uma “interna” e outra “externa” (por falta de nomes melhores). A “interna” é como a simetria de gauge em Física, e fornece a dinâmica dos graus-de-liberdade das partículas de gauge, enquanto que a “externa” é a dinâmica dos campos propriamente ditos. Dessa forma a gente estabelece dum modo bem claro uma relação de ‘recursividade’: a dinâmica “interna” determina o estado “externo” e vice-versa (num sistema de feedback).

Então, a gente pode pensar num Modelo de Potts com 3 estados: ponto, espaço, e ‘espaço branco’ (entre palavras). Esses 3 estados estão sujeitos a uma certa “dinâmica interna” — à la BSB, cf. Learning and Forgetting in Generalized Brain-State-in-a-Box (BSB) Neural Associative Memories — que é descrita por um sistema dinâmico (BSB), e o resultado dessa dinâmica “interna” seleciona um determinado estado para a dinâmica “externa”, que é guiada, por exemplo, por uma dinâmica do tipo BSB também (mas pode ser algum outro tipo, isso não é muito relevante no momento).

Pra apimentar ainda mais esse paradigma, nós estamos implementando ‘operadores de nós’ (knot operators), que são estados topológicos e robustos perante uma gama de “perturbações” do EB. Como esses estados são robustos, é fácil transportá-los hierarquicamente, de um nível hierárquico para outro. O que leva a algumas especulações bastante não-triviais sobre o “aprendizado” do EB — ao contrário do que é normalmente feito em “Teoria Habbiana”.

Bom, por enquanto é só… quem quiser ler um pouco mais sobre o trabalho, pode dar uma olhada num artigo (um pouco antigo, é verdade — o novo vai sair quando eu acabar de escrever 😉 ) disponível no livro abaixo:

Żak, S., Lillo, W., & Hui, S. (1996). Learning and Forgetting in Generalized Brain-state-in-a-box (BSB) Neural Associative Memories Neural Networks, 9 (5), 845-854 DOI: 10.1016/0893-6080(95)00101-8

História do Mundo, em menos de 5 minutos…

quarta-feira, 1 dez 2010; \48\America/New_York\America/New_York\k 48 1 comentário

Hans Rosling ataca mais uma vez! 😈

Reconstrução 3D via fotos…

sábado, 27 nov 2010; \47\America/New_York\America/New_York\k 47 Deixe um comentário

Só pra animar um pouco esse sábado cinzento daqui, aqui vai uma notícia bem legal: 3-D mashup of Rome from Flickr pics.

Ou seja, fizeram uma reconstrução 3D — de monumentos em cidades como Roma e Berlim — a partir de fotos disponíveis publicamente (e.g., Flickr e Google Images). Tecnologia sensacional! 😈

[N.B.: Versão no Twitter.]

SciBloWriMo…

segunda-feira, 8 nov 2010; \45\America/New_York\America/New_York\k 45 1 comentário

O mês de Novembro é conhecido no meio literário como NaNoWriMo, National Novel Writing Month.

Um pessoal da Matemática decidiu pegar carona nessa idéia de criar o MaBlogWriMo: Math Blog Writing Month. A idéia, como descrita no link, é a de se escrever todo dia um post com até 1.000 palavras sobre matemática. 😎

Então, parafraseando ambos esses eventos, vou começar o SciBloWriMo: Science Blog Writing Month! 😈

Eu vou aproveitar que vou dar uma palestra na conferência Miami 2010 e pegar uma carona pra falar dum tema que eu já venho trabalhando há algum tempo: o espaço de soluções (aka moduli space) de teorias quânticas de campo e suas simetrias. Esse será um dos temas do SciBloWriMo aqui no AP.

O outro tema é o de um trabalho que eu venho realizando atualmente, em colaboração com um pessoal da Neurociência, sobre o funcionamento hierárquico e maçissamente paralelo do cérebro, chamado Ersätz-Brain.

Assim que os posts forem ficando prontos, eu os linko aqui,

  • Álgebra, Teoria da Representação e Picard-Lefschetz;
  • Neurociência e o Projeto Ersätz-Brain: Teoria de Gauge, Variáveis de Nós e o Funcionamento Hierárquico do Cérebro.

É isso aí: espero que ninguém esteja com medo do frio! 😉

Simetria e Dualidade em Matemática e Física…

quarta-feira, 23 jun 2010; \25\America/New_York\America/New_York\k 25 Deixe um comentário

%d blogueiros gostam disto: