Arquivo

Archive for the ‘ensino’ Category

Notícias da Semana…

sábado, 7 abr 2012; \14\UTC\UTC\k 14 Deixe um comentário

Nos últimos 7–10 dias, muitas notícias interessantíssimas apareceram. E vale a pena dar uma olhada no que está circulando pelo mundo afora.

  1. Brazil a Great Place to do Physics … and Other Things“: Esse primeiro link é sobre programa de intercâmbio da APS, e o caso da reportagem conta sobre um aluno que saiu da Columbia University, em NY, e foi para o CBPF, no RJ. Como diz o rapaz que fez o intercâmbio, “Given that Rio was one of Richard Feynman’s favorite places, I was sure the experience would be very interesting, and I quickly became excited about it.”. 🙂
  2. Brown University forges research partnership in Brazil“: Esse segundo link é sobre a parceria que a Brown University assinou nessa semana com o IMPA (RJ). A parceria, promovida pela doação de um pai dum aluno da Brown, vai promover a colaboração em pesquisas, conferências e intercâmbios entre a Brown e o IMPA pelos próximos três anos.
  3. Open grad program allows students to pursue two fields“: Esse terceiro link é sobra um programa piloto que a Brown abriu esse ano e que poderia ser resumido como “Ciências Moleculares para a pós-graduação”. A Brown tem um currículo de graduação aberto, como o do Ciências Moleculares, desde os anos 70. E, agora, eles decidiram aplicar o mesmo princípio para a pós-graduação. A idéia é de que os alunos selecionados para participar desse experimento irão cursar seus respectivos doutoramentos, que será complementado com um mestrado em alguma outra disciplina. (A Brown permitia que seus alunos tirassem um ‘double-masters’, i.e., um duplo-mestrado até alguns anos atrás, quando essa opção foi cancelada em favor dessa nova empreitada multi- e inter-disciplinar.) E é disso que trata a reportagem, desse experimento em se ter um currículo multi- e inter-disciplinar na pós-graduação. Até onde eu conheço, essa é uma atitude completamente pioneira e que não existe em nenhuma outra escola. 😈
  4. How the Modern Physics was invented in the 17th century, part 1: The Needham Question“: Essa é a primeira parte (de um total de 3) de um blog convidado da SciAm, contando a história da Física moderna. Muito interessante.
  5. How Much Is a Professor Worth?“: Essa matéria do NYT trata do tópico de um novo livro que tenta comparar o salário de professores em diferentes países. Vale a pena ler pra ver em qual posição o Brasil se encontra, e como os diferentes países se comparam. Há muitos detalhes a serem analisados nessa questão todo… mas, de qualquer maneira, é um bom começo.
  6. Sociedade Brasileira de Física — Cortes no orçamento de ciência ameaçam futuro do Brasil“: o governo decidiu cortar o orçamento em cerca de 33% (comparado ao orçamento de 2010), entrando em rota de colisão com diversas conquistas recentes da política científica federal.
  7. Carnaval Is Over“: Seria esse o fim do milagre brasileiro? A FP faz uma lista dos vários fatores que influenciam essa questão.

Parcerias científicas internacionais, flexibilização do currículo da pós-graduação, história da Física, cortes do orçamento de ciência e tecnologia, e futuro econômico do país. Todas notícias relevantes e contemporâneas.

“E agora, José?”

Conferência da Divisão de Partículas e Campos de APS…

segunda-feira, 8 ago 2011; \32\UTC\UTC\k 32 Deixe um comentário

Hoje (segunda-feira, 08-Ago-2011) começa a edição de 2011 da Conferência da Divisão de Partículas e Campos da American Physical Society.

O programa da Conferência pode ser encontrado no link de ‘Schedule’ da mesma.

Mais ainda, os “proceedings” da Conferência serão publicados através do eConf.

Há também uma página para a Conferência no Indico do CERN, DPF2011 @ Indico/CERN. (A razão pra essa duplicação de esforços está fora da minha alçada (coisas da dicotomia de se passar o tempo dividido entre duas insituições) — quando me chamaram pra ajudar na organização da DPF2011 esse tipo de decisão já havia sido tomada. :razz:)

De qualquer maneira, essa página no Indico contém links para os Resumos das palestras e posteres, índice dos autores e palestrantes. Em particular, nestas listagens e índices é possível se encontrar os PDF que já foram carregados para o servidor.

Eu e o Rafael estamos atendendo a DPF2011. Então, vcs podem esperar por twittadas, fotos, posts, etc, etc, etc… provavelmente não no estilo “cobertura ao vivo”, uma vez que tudo vai ser meio corrido, mas fica aí aberto o canal pra quem quiser fazer perguntas ou participar de alguma outra maneira. 😉

O Brasil no Chronicle of Higher Education…

sábado, 9 jul 2011; \27\UTC\UTC\k 27 7 comentários

O jornal The Chronicle of Higher Education é uma das referência no mundo da Educação Superior — assim como o Times Higher Education.

No começo da semana, o Chronicle publicou a seguinte matéria sobre o Brasil: Brazil Reaches Out. Essa reportagem também apareceu no Physics Today: Brazil reaches out (Physics Today).

Pra quem está com preguiça de clicar no link da Physics Today, aqui vai o comentário deles (em sua integridade):

Chronicle of Higher Education: The Brazilian government has announced that it will fund 75,000 studentships to study abroad, worth $30,000 each. Brazil’s university system is successful, but that success is not unqualified; scientific research is highly variable in quality, and there is a shortage of researchers. Student bodies of elite universities tend to be economically homogenous. The Brazilian government recognizes that the country’s higher education system will need to expand rapidly while improving in quality if it is to support the country’s economic growth: 7.5% last year, with another 4% predicted for 2011 despite the global slowdown.

O ponto principal da reportagem é o seguinte: o governo brasileiro anunciou 75.000 bolsas-de-estudos (para estudo no exterior) no valor de US$30.000 cada. (Posso estar enganado, eu até gostaria de ter mais informações a esse respeito, mas meu entendimento é que essas bolsas são para áreas onde não há possibilidade de se fazer a pesquisa no Brasil.)

Eu, confesso, tenho algumas dúvidas. Por exemplo, como esse valor de US$30.000 é calculado e aplicado para uma bolsa de doutoramento? A tuition (custo anual) das escolas pode variar muito: nos USA, para a pós-graduação, uma escola pública (e.g., UCLA ou UCSD, SUNY-SB, Rutgers, etc) pode cobrar cerca de ~US$20.000 para alunos estrangeiros (que claramente têm origem fora do estado onde essas escolas se localizam — a anuidade para residentes do estado é consideravelmente mais baixa: cerca de 25% do valor cobrado para quem vem de fora do estado), assim como uma escola privada (Harvard, MIT, Princeton, Brown, Chicago) pode cobrar até US$40.000 por ano! E isso não inclui o salário para o doutorando, que gira em torno de US$2.000/mês (i.e., cerca de ~US$21.000–US$24.000 por ano), dando um total de até ~US$65.000 por ano. Portanto, mesmo uma média simples entre os dois tipos possíveis de anuidades já dá o valor anunciado para as bolsas, cerca de ~US$30.000.

Claro, a situação na Europa é bem diferente e varia bastante de país pra país (e.g., Reino Unido, França, Alemanha). Então, eu imagino que os valores europeus vão ser um pouco mais baixos quando comparados aos valores americanos. Por outro lado, a conta européia vem em Euros, o que torna tudo cerca de 43% mais caro que a conta americana. Então, um custo de ~€21.000 se torna algo como ~US$30.000.

Mais ainda, quem conhece gente que foi pro exterior pago pelo CNPq, sabe o quão comum é o atraso do pagamento dessas pessoas…: muito mais comum do que deveria — às vezes vc recebe por 3 meses atrasados. De qualquer modo, essa já é outra questão, apesar de relevante pra pessoa que está do outro lado do oceano.

Fora isso, também é importante se colocar esses números em comparação com os dados do post Como a Ciência escapou da Foice do Orçamento — até agora. Em particular, os seguintes artigos são de extrema relevância: Brazil cuts its science budget e Brazil’s budget cut dismays scientists . Esses cortes não precisam, necessariamente, afetar as bolsas mencionadas acima. Entretanto, as pessoas formadas por este programa de bolsas vão necessariamente (por causa do contrato da bolsa) voltar para o Brasil — o que imediatamente traz a seguinte pergunta à tona: “Com esses cortes, será que haverá empregos para esses bolsistas? Ou será que eles simplesmente vão ficar desempregados depois de voltarem? Há planos para a absorção desses bolsistas?” E por aí afora…

Portanto, a notícia soa boa, mas sem os devidos detalhes fica difícil de se saber o quão realista isso tudo é.

Reproduzo aqui o artigo do Chronicle em sua integridade.

Brazil Reaches Out

July 5, 2011, 12:14 pm, By Nigel Thrift.

In Brazil on a delegation with the Deputy Prime Minister and the Minister of State for Universities and Science. As usual with these delegations, they tend to be a mixture of frenzied last-minute reorganizations and moments of formal ceremony. They certainly require serious stamina occasioned by crammed programmes and non-stop travel.

But this delegation was buoyed by the Brazilian government’s announcement of 75,000 studentships to study abroad over the next four years, each worth $30,000, of which the UK looks set to obtain a good number.

What is striking about Brazilian higher education its range and variety. There are numerous private institutions, some of which are of good quality. There are state universities. There are federal universities. There are a number of federal science and technology institutions like CAPES, along with many national institutes of science and technology. There are a number of companies (most notably Petrobras and Embraer) which have close associations with universities. I was able to visit the University of Sao Paulo, an august institution boosted by the fact that a proportion of the State of Sao Paulo’s sales tax goes to universities (other countries take note).

What became clear to me was that Brazilian higher education is now in a state of take-off. Brazilian research is often world class. It is the 13th biggest knowledge producer as measured by numbers of papers. In particular, Brazilian research in is paramount in fields like engineering and aspects of the biological sciences.

In a meeting with luminaries from the world of Brazilian higher education, what was clear was that they are bullish about the future and that the scholarship scheme is a tangible expression of that optimism, as well as a desire to diversify the locations in which students study (which are currently led by the United Sates and France).

What is very different from many other countries which are now in economic take-off is that Brazil already has a thriving university system which has achieved many successes. It needs to expand its higher education system rapidly but the goal that has been set for participation rates seems entirely possible. In fact, it is about the same rate of expansion as the UK has achieved over the last 30 years.

There are clearly still problems. For example, the elite universities tend to be populated by students from well-off backgrounds. But Brazil is hardly the only country that can be accused of that. Again, there is very considerable variation in quality. Again, Brazil is hardly the only country that can be accused of that. It has a shortage of researchers to match its ambitions. Once more, Brazil is hardly the only country that can be accused of that.

In other words, this cannot be seen as a situation in which a country needs “help.” Rather, it requires a partnership of equals in which the non-Brazilian partner realizes that the Brazilian partner has much more to offer than the prospect of studentships abroad. Those studentships are a sign off greater engagement but an engagement that will be a two-way process right from the very start.

A lição importante da Física

domingo, 8 maio 2011; \18\UTC\UTC\k 18 10 comentários

Este post apresenta opiniões sobre ensino de Física do autor do post e não necessariamente refletem as opiniões de todos os editores do blog.

Em uma das minhas primeiras aulas de Física na universidade, um professor já quase para se aposentar comentou que ele observou que era comum os calouros falarem apaixonadamente em demonstrar que Einstein estava errado, e quatro anos depois tornavam-se defensores da Relatividade com todos os jargões possíveis.

No nosso sistema educacional contemporâneo ao redor do mundo, professores usam livros-texto de 1000 páginas e preparam os cursos na ordem dos capítulos 1, 2, 3, … e enfatizam aos alunos ler os exemplos 1.2, 2.10, 4.5 e resolver os problemas 1.5, 2.19, 3.14 — porque um igual ao 2.19 vai cair na prova! Todo conteúdo, problemas e soluções relevantes são apresentados aos alunos em classe ou em panfletos. Mas será que as atividades que nós realizamos fora da escola tem paralelo com essa estrutura? Será o tempo que um bloco de madeira de 10.2 g leva para deslizar até o chão em um plano inclinado a 25° de uma altura de 2.4 m a lição importante que queremos ensinar em Física?

Eu creio que a maioria dos físicos concordariam comigo que no trabalho científico é difícil dizer que problemas são interessantes e com solução em um dado momento histórico. No trabalho científico mesmo quando nós concluimos um novo capítulo no conhecimento de Física, não temos claramente quais são os próximos capítulos que podem ser escritos. Quase sempre apenas se tem uma ideia vaga do sumário de três ou mais capítulos que podemos escrever. E nos forçamos a ter várias ideias, porque é quase certo que um dos sumários iniciais não vai render um capítulo inteiro. E como os capítulos em pesquisa científica são novos, um problema que tem uma solução conhecida não é de interesse: os físicos não passam tempo debatendo sobre transmissão de rádio e preferem investigar colisões de prótons em energias nunca antes observadas ou procurar interações que podem não existir da matéria escura. Muito mais valioso para ciência do que saber soluções de cor é elaborar problemas interessantes. Pense no exemplo no final do século XIX, quando buscava-se entender porque não foi possível detectar o éter luminífero, quando então Einstein se interessou por responder a pergunta de porque as equações de Maxwell não eram independentes do referencial. A formulação do problema nos termos de Einstein levou a solução dos mesmos problemas que Lorentz, Poincaré e Abraham investigavam. Foi a elaboração da pergunta, e não um conhecimento pedante de cálculo tensorial, que nos levou a Relatividade.

Eu acredito que a relevância de selecionar problemas interessantes vai além da pesquisa em ciência e insere-se no mundo empresarial, no governo, em ações sociais, jornalismo, na arte e possivelmente em quase todas relações socio-economicas humanas. Por exemplo, nos negócios, ninguém lhe dirá qual é o próximo produto de sucesso. Chegar primeiro no celular e no iPod é parte da busca do progresso. Perceber que problemas do ambiente de negócio são interessantes para serem resolvidos com intuito de aumentar a produtividade e diminuir a burocracia é tarefa espontânea que todo gerente gostaria de ter nos seus empregados. O empresário brasileiro Ricardo Semler, presidente de uma empresa com valor de mercado de mais de US$200 milhões, e cujas ideias de administração levaram-no a dar aulas na Escola de Administração do MIT e Harvard, relatou sua frustração com o sistema de ensino no Fórum Mundial de Tecnologia do Aprendizado de 2009:

Como as pessoas estão chegando a empresa, e portanto ao mercado de trabalho, das escolas? (…) Elas dirão: você precisa me dizer onde eu vou ficar, o que eu devo fazer, qual o meu plano de carreira, e nós dizemos a elas que não temos nada a falar sobre isso, ‘Você tem que encontrar essa solução’. Nós percebemos que as pessoas vem a nós de um sistema educacional onde elas aprendem submissão desde cedo. (…) Elas chegam ao mercado de trabalho prontas para seguir ordens ou seguir uma carreira, coisas que não existem mais.

A narrativa de Semler é bem familiar: professores de Física oferecem a ideia de que os problemas que devem ser resolvidos são aqueles já escritos no final do capítulo. Nós educamos com base em reprodução de conhecimento já estabelecido ao invés de criação original.

Há outro aspecto que eu acredito inibir a criatividade: o formato das avaliações de hoje. Estas enfatizam obter os coeficientes a balancear uma reação química, que o tempo de vôo de um objeto é 25 s ou que a raiz da equação é 3√2+5i no plano complexo. Se o estudante não acerta esse resultado final, ele é penalizado. Parece-me que o sistema recompensa obsessão por estar correto, inibindo tentativas audaciosas. O Brian Greene tem uma história interessante sobre isso: uma vez quando estava em uma turma de crianças, para medir o quanto elas já tinham aprendido de matemática, ele perguntou “quantos 3 cabem em 6?”, escolheu um dos braços que se levantou no ar e a menina foi ao quadro e desenhou um 6 grande com um 3 pequeno dentro! Não era exatamente a resposta que Greene procurava, mas era um 3 dentro de um 6! Em algum momento na evolução educacional desta criança esse tipo de atitude desinibida se perde. Minha experiência com alunos em Dartmouth é que pouquíssimos vão arriscar responder perguntas em classe, eles preferem ficar calados. Como vamos resolver a crise de energia ou o déficit público quando nossos alunos preferem não fazer nada do que arriscar uma solução incorreta?

Se você concordou comigo até agora, acho que podemos ver que um ensino centrado em reprodução de conhecimento ao invés de criação é um problema difícil de resolver. Eu não tenho em mente com essa crítica que podemos dispensar por completo do tradicional, mas podemos tentar encontrar um balanço adequado entre ensinar conteúdo e criação de problemas. Para ter uma ideia do que tenho em mente, considere o exemplo de como ensinamos álgebra para crianças daquelas 6a e 7a séries (escolho esse exemplo porque deve ser familiar a maioria das pessoas). Após ensinar os básicos das regras de álgebra, a criança passa o ano inteiro resolvendo problemas como “aplique a regra distributiva a (1+x)(3+y2)”. Eu lembro que na minha 8a série nós aprendemos a fórmula da Baskhara logo no primeiro mês e passamos o resto do ano resolvendo exemplos diferentes de equações do segundo grau! Uma abordagem distinta é ensinar as regras de álgebra e pedir aos alunos que pensem em problemas de álgebra. Cada aluno poderia escrever cinco ou mais equações aleatoriamente, e o professor poderia sugerir uma para o aluno investigar, uma espécie de “feira de ciências de matemática”. Se um único aluno da 7a série escrever e investigar uma equação como xn+yn=zn (último teorema de Fermat), x2 – n y2 = 1 (equação de Pell) ou ax+ b y = c (equação linear diofantina) estaremos em direção de uma nova geração de Gauss, e o mundo desesperadamente precisa de um novo Gauss. Um abordagem como essa permite os alunos escolherem que problemas de álgebra eles se interessam, que direção eles gostariam de seguir, e vão desde cedo encontrar a possibilidade da limitação do progresso com problemas mal escolhidos. Em cursos de pós-graduação, até o exame pode ter uma pergunta como “Elabore o seu próprio problema e resolva-o”, como ouvi dizer que o Prof. Jayme Tiomno fazia. Em classes de física básica universitária, algo simples pode ser feito: todo dever de casa pode incluir uma solicitação do aluno criar seu próprio problema; depois a turma pode ser dividida em grupos pequenos supervisionados por um professor e/ou monitor de disciplina que observa e ajuda os alunos a discutirem seus próprios problemas no quadro negro. Veja que essa tarefa é muito diferente de pegar um problema do livro e apresentar em sala. Se o problema está no livro, não é interessante! Alunos de turmas mais avançadas da graduação podem ser motivados a elaborarem problemas para a disciplina baseados nos seus interesses pessoais, no seu projeto de iniciação científica, ou em outras disciplinas.

Eu gostaria de concluir com um pouco de psicologia pois não quero embasar minha perspectiva de ensino em anedotas. Há algumas coisas que os neurocientistas parecem ter chegado a um consenso: 1) o cérebro humano desenvolve sua estrutura do dia do nascimento até mais ou menos 20 anos de idade e 2) a prática de uma certa tarefa está associada a especialização de regiões do cérebro para realizá-la e criação de sinapses. Em termos simples: é preciso prática para ser um bom músico, e é melhor começar quando criança. Se nós educarmos exclusivamente para obter alunos que irão fazer fantásticas e rápidas reproduções de exercícios, vamos obter resultados estelares no vestibular e concursos públicos. Mas nós não queremos só isso da educação de ciência: queremos também a habilidade do pensamento crítico e criativo. Eu acredito que motivar os alunos desde cedo a criar seus próprios problemas estimulará essa habilidade e quem sabe, a tornará bastante natural em idade adulta.

Texto baseado em um ensaio sobre ensino de Física que escrevi a pedido da Graduate School of Arts and Sciences de Dartmouth College, em ocasião do Filene Graduate Teaching Award.

Alguns vídeos inspiradores:
Ken Robinson, “Escolas matam criatividade”, com legendas em português.


 

Ricardo Semler no LATWF 2009 (são dois vídeos):
 


 

Brian Greene no Aspen Ideas Festival 2008
 

Would the Bard Have Survived the Web?

terça-feira, 15 fev 2011; \07\UTC\UTC\k 07 3 comentários

O New York Times tem um artigo de opinião de hoje entitulado Would the Bard Have Survived the Web? (“Teriam os menestréis sobrevivido a Internet?”, tradução livre). Vcs podem ler o artigo em Inglês seguindo o link acima, ou, se preferirem, podem ler a tradução para pt_BR via Google Translate.

Aqui vão meus comentários sobre o assunto:

  • Poor understanding of the concept of “market”, as it was done in the past and as it is done today, in our “Information Era”;
  • Poor understanding of the concept of “intellectual property” and “copyright”;
  • Pathetically dismissive argument against “[a] handful of law professors and other experts”: a 6-line paragraph? Out of which, only a single phrase address the actual point?! Seriously, this is the best these 3 people could do to ground their defense in solid and robust arguments?! They couldn’t even come up with a typical list of pros and cons? Deconstructing this 1-paragraph argument is really a silly exercise: the misunderstanding of the differences between “Science” and “Technology” is enough to make this 1-paragraph self-destructive. This is pretty shameful… 😦
  • Here are a couple of question that i would like answer: if “Science” had patented some of its *basic* and *fundamental* research outcomes, like the following, what would these same folks be saying, what would their tune be: electromagnetism (TV, radio), quantum mechanics (modern electronics, semiconductor devices, X-rays, MRIs, etc), general relativity (GPS; fluid mechanics: think missiles and torpedos)? What would happen if all of these *fundamental research* discoveries had been patented, copyrighted and “intellectual property-ed”?! Science, Physics in fact, would definitely not need any government support today, nor run the risk to have DOE’s budget completely slashed (regarding research support).
  • And, the cherry on the top of this piece, is the constant comparison with the Dark Ages, with the Medieval Times… seriously: the world really did not change since then?! Over 300 years have passed and the best these 3 gentlemen can do is propose a “market” as it was done over 3 centuries ago? This is their *very best* solution to address their “problem”? Do they even understand that the very concept of “market” has changed in these 3 centuries? Do they understand that the very core of their issue is exactly the grasping to understand what the “Web” really means and how to best use it? Do they realize that people don’t quite know what to do with this deluge of information and possibilities coming from the Web? :sigh: 😦

SciBloWriMo…

segunda-feira, 8 nov 2010; \45\UTC\UTC\k 45 1 comentário

O mês de Novembro é conhecido no meio literário como NaNoWriMo, National Novel Writing Month.

Um pessoal da Matemática decidiu pegar carona nessa idéia de criar o MaBlogWriMo: Math Blog Writing Month. A idéia, como descrita no link, é a de se escrever todo dia um post com até 1.000 palavras sobre matemática. 😎

Então, parafraseando ambos esses eventos, vou começar o SciBloWriMo: Science Blog Writing Month! 😈

Eu vou aproveitar que vou dar uma palestra na conferência Miami 2010 e pegar uma carona pra falar dum tema que eu já venho trabalhando há algum tempo: o espaço de soluções (aka moduli space) de teorias quânticas de campo e suas simetrias. Esse será um dos temas do SciBloWriMo aqui no AP.

O outro tema é o de um trabalho que eu venho realizando atualmente, em colaboração com um pessoal da Neurociência, sobre o funcionamento hierárquico e maçissamente paralelo do cérebro, chamado Ersätz-Brain.

Assim que os posts forem ficando prontos, eu os linko aqui,

  • Álgebra, Teoria da Representação e Picard-Lefschetz;
  • Neurociência e o Projeto Ersätz-Brain: Teoria de Gauge, Variáveis de Nós e o Funcionamento Hierárquico do Cérebro.

É isso aí: espero que ninguém esteja com medo do frio! 😉

A física da pesquisa e a física da sala de aula

quarta-feira, 29 set 2010; \39\UTC\UTC\k 39 2 comentários

Disclaimer: esse post é uma opinião muito pessoal de seu autor, e pode ser que os outros membros do blog não concordem.

Como eu já disse por aqui, eu fico bastante entusiasmado com a idéia de cursos abertos online e disponibilização de material em vídeo, como na iniciativa OpenCourseWare, por exemplo. E eu sou um usuário adicto desses materiais. Já devo ter ouvido as aulas de mais de uma dezena desses cursos, por diversão mesmo, em áreas muito diversas (história, estudos religiosos, biologia, antropologia…). Mas não comecei esse texto para falar desses cursos, mas para falar de algo que esses cursos me fizeram notar a respeito de uma diferença fundamental entre o ensino de física e o ensino em outras áreas do conhecimento, de forma particular, mas não restrita, nas ciências médicas e biológicas.

Para exemplificar o que quero dizer, vou me referir à terceira aula do curso de biologia geral dado na primavera de 2010, na Universidade da Califórnia em Berkeley, cujas aulas em vídeo e éudio estão disponíveis para download no site de webcasts da universidade (http://webcast.berkeley.edu). Em certo ponto dessa aula, a professora diz “e realmente nos últimos 5 ou 6 anos muita pesquisa foi feita para entender a estrutura interna e função do ribossomo, e eu vou mostrar para vocês uma imagem…” e passa a discorrer sobre assunto de pesquisa muito recente, sobre o qual ainda há dúvidas e questões em discussão. Cenas como essa são comuns em todos os cursos que ouvi. Assuntos de pesquisa são citados na sala de aula rotineiramente e discutidos nos trabalhos e dissertações que os alunos tem de entregar para ser avaliados. Isso me chocou. Me chocou como algo completamente alheio com a minha experiência de sala de aula, que acredito ser não muito diferente da experiência de todos os físicos formados no Brasil, e provavelmente no mundo todo. É inconcebível na nossa experiência que um professor de Física I (ou de Physics 101) entre na sala de aula e dê como exercício de casa a uma turma mista de dezenas e dezenas ingressantes de diversos cursos – engenharia, física, química, … – a leitura de um artigo de pesquisa publicado a menos de 10 anos. Nenhum assunto discutido em uma aula de física, mesmo nos últimos anos da faculdade, é mais recente do que a década de 40. Em compensação, poucos assuntos discutidos em uma aula de biologia celular são mais antigos que a década de 70, e muitos tem menos de 10 ou 15 anos de idade! E por que é assim?

Tudo bem, há uma série de explicações muito plausíveis para isso. Talvez a mais forte seja que os conceitos físicos e as ferramentas matemáticas usadas na pesquisa são muito mais avançados do que os que estão sendo estudados na graduação, e que é necessário um período longo de treinamento para sair da primeira aula sobre as leis de movimento de Newton e chegar na mecânica quântica, passando por todos aqueles passos intermediários. A maturação de um físico é um processo longo e lento, nessa visão. Vai da primeira aula de Física I até mais ou menos o meio do doutorado. A física é uma ciência mais antiga e madura, dizem os que defendem essa idéia, e um estudante de física tem que estudar toooodas essas coisas com detalhes, desde o nascimento da mecânica newtoniana até a mecânica quântica e suas aplicações mais elementares. Além disso, um ingressante em física ainda não foi exposto nem ao ferramental matemático básico para prosseguir aprendendo física – o cálculo, a algebra linear e etc…

Apesar de acreditar que há alguma verdade nisso, sinceramente acho que ela é exagerada e super-simplificada pela típica autosuficiência e arrogância dos físicos (eu me incluo nessa conta) e pela inércia do sistema educacional. Faz anos que é assim, foi assim que fizemos no passado, é assim que faremos no futuro porque é assim que se ensina física. E bem, veja só, é mais difícil aprender física, não é?

Não. Não é. Sinceramente, não é. Aprender biologia pra valer é tão difícil quanto aprender física. Ou mais! Pode ter um pouco menos de matemática, mas nas duas ou três primeiras aulas do curso introdutório para a graduação da UC Berkeley que assisti já há uma série de mecanismos celulares complicados, relações entre as organelas, estruturas moleculares complicadas, como as isomerias e as simetrias afetam a função das moléculas, e se o carbono alfa está assim, então a isomeria faz com que o poro da membrana nuclear fique assado… 😯 😯 😯

Não é fácil, definitivamente. E não é “coleção de selos”, é uma sequencia lógica de mecanismos e estruturas bem entendida até certo ponto. Eu não estou acompanhando direito.

Porque um ingressante de biologia está pronto para discutir a biologia molecular dos poros da membrana nuclear de maneira tão detalhada e um estudante de física não está pronto para discutir fenômenos críticos e transições de fase, ou entender, pelo menos num nível qualitativo, o que é decoerência, o que são teorias de campo conforme e porque a correspondência AdS/CFT é tão importante, quais são as alternativas para explicar energia escura, porque o grafeno é um material tão especial, porque é tão difícil ter materiais semicondutores que sejam ferromagnéticos, o que a física por trás de folding de proteínas tem a ver com a física de cristais magnéticos, quais são os melhores candidatos para física além do modelo padrão, como podemos detectar radiação Hawking?

E se tocamos nesse assunto, porque não ir mais fundo? Se os estudantes de física não chegam à metade do século passado, os estudantes do colegial param muito antes disso. A física que fingimos ensinar nas escolas tem pelo menos 150 anos de idade, e é absolutamente inútil para essas pessoas da forma como é ensinada, em todos os aspectos. Não estimulam curiosidade científica, não as ajudam a entender o ambiente tecnológico em que vivem, não fornecem ferramentas de trabalho úteis e nem as preparam para a universidade.

O ensino de Física está, em minha opinião, caduco em todos os níveis e precisando de urgente reforma. E quanto mais a pesquisa avança, mais urgente essa mudança se torna. Se queremos pessoas prontas para integrar os quadros de pesquisa, se queremos estudantes motivados e se queremos desenvolver o quanto antes o gosto pela pesquisa, precisamos forçar a fazer o que os biólogos fizeram de forma natural, e trazer a física da pesquisa de volta para as salas de aula.

%d blogueiros gostam disto: