Arquivos

Arquivo para a categoria ‘Science’

Notícias da Semana…

sábado, 7 abr 2012; \14\UTC\UTC\k 14 Deixe um comentário

Nos últimos 7–10 dias, muitas notícias interessantíssimas apareceram. E vale a pena dar uma olhada no que está circulando pelo mundo afora.

  1. Brazil a Great Place to do Physics … and Other Things“: Esse primeiro link é sobre programa de intercâmbio da APS, e o caso da reportagem conta sobre um aluno que saiu da Columbia University, em NY, e foi para o CBPF, no RJ. Como diz o rapaz que fez o intercâmbio, “Given that Rio was one of Richard Feynman’s favorite places, I was sure the experience would be very interesting, and I quickly became excited about it.”. :-)
  2. Brown University forges research partnership in Brazil“: Esse segundo link é sobre a parceria que a Brown University assinou nessa semana com o IMPA (RJ). A parceria, promovida pela doação de um pai dum aluno da Brown, vai promover a colaboração em pesquisas, conferências e intercâmbios entre a Brown e o IMPA pelos próximos três anos.
  3. Open grad program allows students to pursue two fields“: Esse terceiro link é sobra um programa piloto que a Brown abriu esse ano e que poderia ser resumido como “Ciências Moleculares para a pós-graduação”. A Brown tem um currículo de graduação aberto, como o do Ciências Moleculares, desde os anos 70. E, agora, eles decidiram aplicar o mesmo princípio para a pós-graduação. A idéia é de que os alunos selecionados para participar desse experimento irão cursar seus respectivos doutoramentos, que será complementado com um mestrado em alguma outra disciplina. (A Brown permitia que seus alunos tirassem um ‘double-masters’, i.e., um duplo-mestrado até alguns anos atrás, quando essa opção foi cancelada em favor dessa nova empreitada multi- e inter-disciplinar.) E é disso que trata a reportagem, desse experimento em se ter um currículo multi- e inter-disciplinar na pós-graduação. Até onde eu conheço, essa é uma atitude completamente pioneira e que não existe em nenhuma outra escola. :twisted:
  4. How the Modern Physics was invented in the 17th century, part 1: The Needham Question“: Essa é a primeira parte (de um total de 3) de um blog convidado da SciAm, contando a história da Física moderna. Muito interessante.
  5. How Much Is a Professor Worth?“: Essa matéria do NYT trata do tópico de um novo livro que tenta comparar o salário de professores em diferentes países. Vale a pena ler pra ver em qual posição o Brasil se encontra, e como os diferentes países se comparam. Há muitos detalhes a serem analisados nessa questão todo… mas, de qualquer maneira, é um bom começo.
  6. Sociedade Brasileira de Física — Cortes no orçamento de ciência ameaçam futuro do Brasil“: o governo decidiu cortar o orçamento em cerca de 33% (comparado ao orçamento de 2010), entrando em rota de colisão com diversas conquistas recentes da política científica federal.
  7. Carnaval Is Over“: Seria esse o fim do milagre brasileiro? A FP faz uma lista dos vários fatores que influenciam essa questão.

Parcerias científicas internacionais, flexibilização do currículo da pós-graduação, história da Física, cortes do orçamento de ciência e tecnologia, e futuro econômico do país. Todas notícias relevantes e contemporâneas.

“E agora, José?”

Extendendo Python com C/C++ via PyBindGen e CTypes

sábado, 5 nov 2011; \44\UTC\UTC\k 44 6 comentários

Depois de um tempo sem postar no Ars Physica vim postar sobre algo totalmente diferente do que eu costumo escrever por aqui: programação. Como grande parte dos físicos hoje em dia, meu dia-a-dia consiste em grande parte em escrever programas de computador para resolver problemas e fazer cálculos. Todo começo de projeto de programação impõe um dilema para quem vai dedicar as próximas semanas (ou meses, anos…) escrevendo uma nova ferramenta: que linguagem de programação usar? Eu escolhi a combinação de C/C++ e Python.

As razões para essa escolha são muitas: Python é uma linguagem bastante simples, que permite prototipagem rápida e desenvolvimento de soluções com pouca dor de cabeça, e com uma ampla gama de módulos e bibliotecas prontas para os mais diversos fins (numpy, scipy, matplotlib, entre centenas de outras…). Entretanto código escrito puramente em Python é extremamente lento, por diversas razões. Isso faz com que não seja possível escrever uma simulação em python puro se pretende-se ter resultado em um tempo razoável. O ideal portanto é usar como cavalo de carga uma outra linguagem, que seja capaz de produzir binários eficientes, que rodem rápido no seu computador. Essa linguagem deve ser usada nas partes onde eficiência e tempo de execução são críticos, enquanto o Python pode ser usado para lidar com partes que geralmente são chatas de se fazer nessas linguagens de mais baixo nível: lidar com strings, arquivos, operações de sistema, geração de código, parsing,…

Como exemplo, no meu atual projeto no doutorado eu uso C/C++ para fazer uma simulação de Monte Carlo, e o Python para organizar as simulações, rodar a simulação para diversos valores de parâmetros diferentes, salvar os resultados em arquivos organizadinhos, enviar os processos para rodar nos diversos nós do cluster do departamento, etc.

Existem dezenas de formas de integrar Python com outras linguagens, de C/C++ e Fortran até Haskell e Emacs Lisp. Entretanto até hoje eu usava a mais boba: compilava um programa em C ou C++ que aceitava parâmetros de linha de comando, e de dentro do código do python abria um pipe para chamar o executável C com os parâmetros adequados com uma chamada de sistema. É uma gambiarra que funciona, mas não deixa de ser uma gambiarra. O ideal é compilar o seu código como uma biblioteca compartilhada que exporta objetos que o interpretador do Python consegue ler. A forma padrão de fazer isso é importar o cabeçalho ‘Python.h’ e usar o API contido lá para criar esses objetos. Isso não é exatamente difícil de fazer, mas é um trabalho sacal e bem repetitivo. É bom ter formas de automatizar esse trabalho e apenas se preocupar em escrever bem seu código em C, sem se preocupar se ele vai ser ou não carregado no python depois.

CTypes

Se o seu código é em C (e não C++) a maneira mais fácil de fazer isso é usando o CTypes – um módulo presente na biblioteca padrão do Python capaz de carregar bibliotecas compartilhadas feitas em C. Por exemplo, suponha que você deseja criar uma função que some dois inteiros e retorne o resultado. O código fonte está nos arquivos teste.h e teste.c:

//arquivo: teste.h
int add(int x, int y);

//arquivo: teste.c
#include "teste.h"
int add(int x, int y){
  return (x + y);
}

Note que esse é um código em C “vanilla”, sem nenhuma referência ao fato de que ele será depois usado no Python. Tudo o que é preciso para disponibilizar a função ‘add’ no python é compilar esse código como uma biblioteca compartilhada:

gcc -fPIC -o libteste.o -c teste.c
gcc -shared -o libteste.so libteste.o

Isso deve gerar um arquivo ‘libteste.so’, que é um binário que possui as instruções da função ‘int add(int, int)’ de forma que pode ser acessado por outros binários em C. Para chamar esse binário dentro do Python com o CTypes é muito fácil:

from ctypes import cdll

libteste = cdll.LoadLibrary("./libteste.so")
# eh necessario passar o caminho completo para o binario pois ele nao esta no PYTHONPATH
x = libteste.add(5, 2)
print x

Esse script deve retornar o valor ’7′, conforme esperado. Difícil, né?

Quando sua função retorna um tipo que não seja ‘int’, é necessário ainda informar ao Python qual é o tipo adequado para converter os objetos do python antes de passá-los para a função em C. O CTypes oferece uma gama de tipos correspondentes a todos os tipos que podem ser criados em C padrão:

Tipo no CType Tipo no C Tipo no Python
c_bool _Bool bool (1)
c_char char 1-character string
c_uint unsigned int int/long
c_long long int/long
c_float float float
c_double double float
c_char_p char * (NUL terminated) string or None

Por exemplo, considere a seguinte função:

//arquivo: teste.h
double c_raizq(double x);

//arquivo: teste.c
#include <math.h>
#include "teste.h"

double c_raizq(double x){
  return sqrt(x);
}

Nesse caso, ao abrir a biblioteca (compilada exatamente como antes) será necessário dar mais informação a respeito dos tipos dessa função:

from ctypes import cdll
from ctypes import *

libtest = cdll.LoadLibrary("./libtest.so")
raiz = libtest.c_raizq
raiz.restype  = c_double
raiz.argtypes = [c_double]

x = raiz(2)

print x

Toda função importada do C tem as duas propriedades ‘restype’ – que é o tipo que a função deve retornar – e ‘argtypes’ – que é uma lista dos tipos que essa função recebe como parâmetros, na ordem em que eles aparecem no código em C.

Quando for necessário usar ponteiros, arrays, structs ou enums, a coisa pode ficar um pouquinho mais complicada, mas nada que faça o código crescer muito mais do que isso. Por exemplo, suponha que queremos exportar o seguinte código para o Python:

//arquivo: teste.h

struct cvec{
  double x;
  double y;
};

typedef struct cvec vector;
double norm(vector * point);  

//arquivo: teste.c

#include "teste.h"
#include <math.h>

double norm(vector * point){
  return sqrt(point->x * point->x + point->y * point->y);
}

Precisamos de uma estrutura similar ao struct ‘vector’ e de portar a função ‘norm’. Note que o argumento dessa função é um ponteiro para a struct vector. O código Python para fazer isso segue abaixo:

from ctypes import cdll
from ctypes import *

#imitando a struct vector 
class vector(Structure):
    _fields_ = [("x", c_double) ,
                ("y", c_double)]

libtest = cdll.LoadLibrary("./libtest.so")
norm = libtest.norm
norm.restype  = c_double
norm.argtypes = [POINTER(vector)]

vecc = vector(5,2)
print norm(pointer(vecc))

A classe vector imita a estrutura do struct vector, e as funções POINTER e pointer são usadas respectivamente para informar que o tipo do argumento é um ponteiro e obter um ponteiro para o objeto ‘vecc’. Structs e unions deve ser replicadas no Python por classes que herdam das superclasses Structure e Union, respectivamente.

Enfim, o CTypes fornece um API completo para usar qualquer código C padrão dentro do Python com um mínimo de boilerplate e nenhuma interferência no código original. Não é preciso reescrever suas funções nem entender a estrutura do API do Python. Apenas compilar seu código como uma biblioteca compartilhada.

PyBindGen

Infelizmente o CTypes não é capaz de ler binários de C++. A razão é simples: não existe um padrão para os binários de C++ e cada compilador implementa interfaces diferentes para seus binários. A esperança é que com o estabelecimento do padrão C++11 isso possa ser resolvido, mas isso é uma questão para o futuro. No entanto existe uma biblioteca feita em Python capaz de gerar bindings de códigos em C++ sem interferir no código e com o mínimo de esforço. Por exemplo, suponha que temos uma classe feita em C++ que representa pontos em 2 dimensões, com alguns métodos úteis:

//arquivo Vector.hpp
#include <cmath>
class Vector {
private:
  double x;
  double y;
public:
  Vector(double _x, double _y) : x(_x), y(_y) {}; //construtor

  double norm();               // retorna tamanho do vector
  void reflectO();           // reflete o vetor através da origem
  void rotate(double theta); // roda o vetor em torno da origem por um angulo theta
};

//arquivo Vector.cpp
#include "Vector.hpp"

double Vector::norm() {
  return x*x + y*y;
}

void Vector::reflectO(){
  x = -x;
  y = -y;x
}

void Vector::rotate(double theta){
  double xx = cos(theta) * x - sin(theta) * y;
  double yy = sin(theta) * x + cos(theta) * y;
  x = xx;
  y = yy;
}

Essa classe cria um vetor com duas componentes, com métodos que calculam a norma, refletem o vetor através da origem e rodam por um certo angulo. Para tornar essa classe disponível para o Python é preciso criar um script que gera automaticamente os bindings que devem ser então compilados em um módulo. A estrutura do script é bem simples – primeiro você deve criar um módulo e adicionar ao módulo a classe que deseja exportar, e em seguida adicionar os métodos à classe:

#arquivo: setupBinding.py
#! /usr/bin/env python

import sys
import pybindgen
from pybindgen import param, retval

#Modulo Vector
mod = pybindgen.Module("Vector")

#o modulo inclui o header Vector.hpp
mod.add_include('"Vector.hpp"')

#Adicionando a classe:
klass = mod.add_class('Vector')

#Adicionando o construtor:
klass.add_constructor([param('double', '_x'), param('double', '_y')])

#Adicionando os metodos:
klass.add_method('norm', retval('double'), [])
klass.add_method('reflectO', None, [])
klass.add_method('rotate'  , None, [param('double', 'theta')])

#imprime o binding na tela
mod.generate(sys.stdout)

Note a sintaxe dos comandos:

  • add_constructor([param('tipo', 'nome'),…]) – essa função recebe uma lista com os parametros que o construtor recebe. Se houver mais de um construtor, eles devem ser todos adicionados em sequencia.
  • add_method(‘nome’, retval(‘tipo de retorno’), [param('tipo_do_parametro1', 'nome1'), …]) – essa função recebe o nome do método, o tipo do valor que o método retorna e uma lista com os tipos dos parametros de entrada.

Ao rodar esse script com ‘python setupBinding.py’, ele imprime na tela um código em C que é um binding para o código contido em ‘Vector.cpp’ e ‘Vector.hpp’. Ao compilar esses bindings, teremos um módulo Vector que pode ser importado dentro do python como qualquer outro módulo:

import Vector

foo = Vector.Vector(1,2)
print foo.norm()
foo.rotate(0.2)

Compilar esse módulo é só um pouquinho mais complicado do que no caso do CTypes. Em primeiro lugar é preciso compilar uma biblioteca compartilhada como anteriormente:

g++ -fPIC -c -o libvector.o  Vector.cpp
g++ -shared  -o libvector.so libvector.o

sh Isso cria os arquivos ‘libvector.o’ e ‘libvector.so’. E então devemos gerar os bindings:

python setupBinding.py > bindVector.c

sh E compilar uma biblioteca compartilhada com os bindings:

g++ -fPIC -I/usr/include/python2.7 -c -o bindVector.o bindVector.c
g++ -shared -o Vector.so -L. -lvector bindVector.o

Note que é preciso passar para o compilador o caminho para os headers do python no seu sistema – no meu caso a versão 2.7 do python no linux está em ‘usr/include/python2.7‘. Também é preciso passar para o linker o caminho atual, onde está os arquivos ‘libvector.so’ e ‘libvector.o’ – que é a pasta atual onde a compilação está sendo feita. Isso é feito com as flag “-L. -lvector”. Isso cria o arquivo Vector.so, que contém o módulo Python que pode ser carregado através do comando “import”. Note que o nome do arquivo deve ser o mesmo nome do módulo conforme adicionado no script que gerou os bindings.

Antes de tentar importar o arquivo no python, é preciso adicionar o caminho onde o arquivo ‘Vector.so’ se encontra nas variáveis de ambiente PYTHONPATH e LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.
export PYTHONPATH=$PYTHONPATH:.

Agora o módulo Vector pode ser usado normalmente:

import Vector

foo = Vector.Vector(1,2)
print foo.norm()
foo.rotate(0.2)

Enfim. Espero que isso ajude quem, como eu, vem quebrando a cabeça com isso a muito tempo e já testou diversas ferramentas (SWIG, SIP, Cython/Pyrex, Boost::Python, etc, etc, etc… ). As documentações oficiais das ferramentas usadas nesse post podem ser encontradas aqui:

Adivinha quem é…?

sábado, 1 out 2011; \39\UTC\UTC\k 39 Deixe um comentário

"3 Mosqueteiros"

Pra quem gosta de quebra-cabeças, e conhece os envolvidos na ‘descoberta’ do chamado Bóson de Higgs, fica essa dica do blog do Ian Sample: quem são esses personagens do livro Massive?

PS: Eu tenho mais dessas fotos… conforme os palpites forem aparecendo, eu ponho mais alguma(s). :twisted:

As Raízes da Metafísica…

segunda-feira, 22 ago 2011; \34\UTC\UTC\k 34 1 comentário

Acabei de ler o post The Roots of Metaphysics que trata do Paradoxo de Russell — que tem a mesma natureza do Argumento Diagonal (o fato de que os Reais são incontáveis).

Entretanto, no sentido exposto no texto — “(…) no set of existential statements can entail a universal statement” —, a primeira coisa que veio a minha mente foi o Teorema do Limite Central (e suas “variações sobre o tema”). Ou seja, apesar dos pesares, minha crítica ao texto, ao modo como o problema foi exposto no texto, é que eu não achei que a noção de recursividade ficou exposta de modo claro o suficiente (de modo que se note que ela é o ‘pilar’ por detrás do problema sendo tratado). A analogia feita no texto é a de que enquanto a afirmação “todos os morcegos estão na pia” é universal, a afirmação “há um morcego na pia” é existencial. O problema dessa analogia é que nós já sabemos, a priori, que o número de morcegos é finito (assumindo, claro, que só existem morcegos no nosso planeta), o que faz uma diferença enorme em toda essa brincadeira. Num certo sentido, o problema dessa analogia está no Paradoxo de Banach–Tarski: se fosse possível, através dum corte ao meio, se obter dois morcegos idênticos entre si, a partir dum morcego original, aí sim, essa seria uma analogia bona fide, uma vez que a recursividade estaria então implementada no problema. Aliás, é por essas, e outras, que existem diferentes formulações da Teoria de Conjuntos, como, e.g., Teoria de Conjuntos de Zermelo–Fraenkel (e suas respectivas objeções), assim como Teoria de Topos e Teoria de Conjuntos de Tarski–Grothendieck.

Acho interessante ver que o Paradoxo de Russell é de ~1925… e que, por exemplo, os Teoremas de Incompletude de Gödel são de 1931: quando postos em contexto, acho que as implicações são bem interessantes. :wicked:

No final das contas, esse assunto tem um nome: Meta-Matemática — leia mais sobre isso em Meta Math! The Quest for Omega e Omega and why maths has no TOEs. Ou seja, como devemos usar a matemática pra avaliar a própria matemática?

Num certo sentido, isso me leva a pensar diretamente sobre o conceito de Grupo de Renormalização, Teorias Efetivas e Espaço de Teorias (em física teórica) (ver também Grupo de Renormalização Funcional). Ou seja, em Física existem teorias que são fundamentalmente desconexas (como, por exemplo, a Relatividade Geral e a Mecânica Quântica); entretanto, existe todo um outro conjunto de teorias que estão conectadas via o Grupo de Renormalização: ou seja, existe uma teoria pra explicar cada conjunto de graus-de-liberdade (ie, as variáveis que descrevem uma determinada teoria); entretanto, é possível se rearranjar um conjunto de graus-de-liberdade de modo a se obter as variáveis relevantes para se explicar outra teoria — esse fenômeno leva o nome de Transição de Fase.

Nesse sentido, existem várias escalas relevantes para a Física, que efetivamente formam “ilhas de teorias”, ou “ilhas de verdade” (à la Gödel). Dessa forma, acabamos com um sistema multi-fractal: a auto-similaridade consiste no fato de que toda a estrutura Física se repete nas diversas escalas: Lagrangianos, [quantização via] Integral de Trajetória de Feynman, Renormalização, etc, etc, etc — exceto, claro, por pontos-fixos não-triviais no Fluxo de Renormalização. :wink:

O Lamento dum Matemático…

domingo, 21 ago 2011; \33\UTC\UTC\k 33 1 comentário

Acabei de encontrar esse artigo (PDF), escrito por Keith Devlin, onde a seguinte citação aparece:

“… The first thing to understand is that mathematics is an art. The difference between math and the other arts, such as music and painting, is that our culture does not recognize it as such. Everyone understands that poets, painters, and musicians create works of art, and are expressing themselves in word, image, and sound. In fact, our society is rather generous when it comes to creative expression; architects, chefs, and even television directors are considered to be working artists. So why not mathematicians?”

(Tradução livre: “… A primeira coisa a entender é que a matemática é uma arte. A diferença entre a matemática e as outras artes, como música e pintura, é que nossa cultura não a reconhece [como arte]. Todo mundo entende que poetas, pintores, e músicos criam trabalhos de arte, e se expressam em palavras, imagens e sons. De fato, nossa sociedade é meio generosa quando o assunto é expressão criativa; arquitetos, chefs [de cozinha], e até mesmo diretores de TV são considerados artistas. Então, por que não os matemáticos?”)

Taí uma desses “perguntinhas capiciosas” que têm a capacidade de mudar muita coisa… “Por que não os matemáticos?”

Uma visão da DPF2011…

sábado, 13 ago 2011; \32\UTC\UTC\k 32 Deixe um comentário

Erwin Schrödinger: vivo ou morto…

quinta-feira, 11 ago 2011; \32\UTC\UTC\k 32 3 comentários

No dia 12 de Agosto de 1887 nascia o bebê Erwin Schrödingerironicamente, até o momento do nascimento, a mãe dele não sabia se ela estava grávida ou não. :twisted:

[N.B.: Pra quem achou a piadinha acima infâme… tem uma melhor ainda hoje: Nova animação da Pixar: Start UP, a história de um velhinho que queria levantar sua empresa com bolhas da internet. tá-dá-tush… :mrgreen:]

Conferência da Divisão de Partículas e Campos de APS…

segunda-feira, 8 ago 2011; \32\UTC\UTC\k 32 Deixe um comentário

Hoje (segunda-feira, 08-Ago-2011) começa a edição de 2011 da Conferência da Divisão de Partículas e Campos da American Physical Society.

O programa da Conferência pode ser encontrado no link de ‘Schedule’ da mesma.

Mais ainda, os “proceedings” da Conferência serão publicados através do eConf.

Há também uma página para a Conferência no Indico do CERN, DPF2011 @ Indico/CERN. (A razão pra essa duplicação de esforços está fora da minha alçada (coisas da dicotomia de se passar o tempo dividido entre duas insituições) — quando me chamaram pra ajudar na organização da DPF2011 esse tipo de decisão já havia sido tomada. :razz:)

De qualquer maneira, essa página no Indico contém links para os Resumos das palestras e posteres, índice dos autores e palestrantes. Em particular, nestas listagens e índices é possível se encontrar os PDF que já foram carregados para o servidor.

Eu e o Rafael estamos atendendo a DPF2011. Então, vcs podem esperar por twittadas, fotos, posts, etc, etc, etc… provavelmente não no estilo “cobertura ao vivo”, uma vez que tudo vai ser meio corrido, mas fica aí aberto o canal pra quem quiser fazer perguntas ou participar de alguma outra maneira. :wink:

Materiais em poucas dimensões

terça-feira, 2 ago 2011; \31\UTC\UTC\k 31 Deixe um comentário

Em Física de altas energias (na verdade altíssimas energias) é comum encontrar alguns modelos ou teorias onde a dimensão do espaço físico (ou espaço-tempo) é alterada.  Em geral, aumentam-se o número de dimensões e compactificam as dimensões extras em diâmetros minúsculos para que só possam ser acessadas somente com os próximos aceleradores de partículas. Se fossem maiores já teríamos visto estas dimensões extras.

Em Nanociência o número de dimensões também pode variar, e ser diferente de três. Mas neste caso a contagem de dimensões é feita no espaço-k. Um material com relações de dispersões em n direções é dito ser n-dimensional (ou nD). Algumas pessoas preferem se referir a estes materiais como quasi-nD, para não confundir com o espaço real nD.

Por exemplo, um cristal 3D é formado pela repetição de uma célula unitária em três dimensões. Como há condições periódicas de contorno, suas propriedades eletrônicas (funções de onda, autoenergias, DOS) serão mapeadas num espaço-k de dimensão 3. Na superfície deste mesmo cristal 3D, uma das condições de periodicidade é perdida, fazendo o espaço-k desta região ser reduzido em uma dimensão também.

Alótropos de carbono de várias dimensões.

Para os alótropos de carbono, entre algumas das estruturas de baixa dimensionalidade (n<3) estão a molécula de Fulereno (0D), nanotubos de carbono (1D), nanofitas de grafeno (1D) e grafeno (2D). As bicamadas (ou multicamadas) de grafeno também são consideradas 2D, já que embora haja átomos de carbono distribuídos espacialmente em três dimensões, só há periodicidade em duas. Isto acaba se refletindo na zona de Brillouin, enquanto multicamadas de grafeno têm zona hexagonal (no plano), o grafite tem um prisma hexagonal. As superfícies (ou hiper-superfícies) da estrutura de bandas também são diferentes nestes dois materiais.

O conceito de dimensionalidade de uma nanoestrutura é simples, mas não é incomum ver algumas pessoas (as vezes até professores) errando isto. Mas pra corrigir isto sempre podemos recorrer ao velho e bom teorema de Bloch.

O Brasil no Chronicle of Higher Education…

sábado, 9 jul 2011; \27\UTC\UTC\k 27 7 comentários

O jornal The Chronicle of Higher Education é uma das referência no mundo da Educação Superior — assim como o Times Higher Education.

No começo da semana, o Chronicle publicou a seguinte matéria sobre o Brasil: Brazil Reaches Out. Essa reportagem também apareceu no Physics Today: Brazil reaches out (Physics Today).

Pra quem está com preguiça de clicar no link da Physics Today, aqui vai o comentário deles (em sua integridade):

Chronicle of Higher Education: The Brazilian government has announced that it will fund 75,000 studentships to study abroad, worth $30,000 each. Brazil’s university system is successful, but that success is not unqualified; scientific research is highly variable in quality, and there is a shortage of researchers. Student bodies of elite universities tend to be economically homogenous. The Brazilian government recognizes that the country’s higher education system will need to expand rapidly while improving in quality if it is to support the country’s economic growth: 7.5% last year, with another 4% predicted for 2011 despite the global slowdown.

O ponto principal da reportagem é o seguinte: o governo brasileiro anunciou 75.000 bolsas-de-estudos (para estudo no exterior) no valor de US$30.000 cada. (Posso estar enganado, eu até gostaria de ter mais informações a esse respeito, mas meu entendimento é que essas bolsas são para áreas onde não há possibilidade de se fazer a pesquisa no Brasil.)

Eu, confesso, tenho algumas dúvidas. Por exemplo, como esse valor de US$30.000 é calculado e aplicado para uma bolsa de doutoramento? A tuition (custo anual) das escolas pode variar muito: nos USA, para a pós-graduação, uma escola pública (e.g., UCLA ou UCSD, SUNY-SB, Rutgers, etc) pode cobrar cerca de ~US$20.000 para alunos estrangeiros (que claramente têm origem fora do estado onde essas escolas se localizam — a anuidade para residentes do estado é consideravelmente mais baixa: cerca de 25% do valor cobrado para quem vem de fora do estado), assim como uma escola privada (Harvard, MIT, Princeton, Brown, Chicago) pode cobrar até US$40.000 por ano! E isso não inclui o salário para o doutorando, que gira em torno de US$2.000/mês (i.e., cerca de ~US$21.000–US$24.000 por ano), dando um total de até ~US$65.000 por ano. Portanto, mesmo uma média simples entre os dois tipos possíveis de anuidades já dá o valor anunciado para as bolsas, cerca de ~US$30.000.

Claro, a situação na Europa é bem diferente e varia bastante de país pra país (e.g., Reino Unido, França, Alemanha). Então, eu imagino que os valores europeus vão ser um pouco mais baixos quando comparados aos valores americanos. Por outro lado, a conta européia vem em Euros, o que torna tudo cerca de 43% mais caro que a conta americana. Então, um custo de ~€21.000 se torna algo como ~US$30.000.

Mais ainda, quem conhece gente que foi pro exterior pago pelo CNPq, sabe o quão comum é o atraso do pagamento dessas pessoas…: muito mais comum do que deveria — às vezes vc recebe por 3 meses atrasados. De qualquer modo, essa já é outra questão, apesar de relevante pra pessoa que está do outro lado do oceano.

Fora isso, também é importante se colocar esses números em comparação com os dados do post Como a Ciência escapou da Foice do Orçamento — até agora. Em particular, os seguintes artigos são de extrema relevância: Brazil cuts its science budget e Brazil’s budget cut dismays scientists . Esses cortes não precisam, necessariamente, afetar as bolsas mencionadas acima. Entretanto, as pessoas formadas por este programa de bolsas vão necessariamente (por causa do contrato da bolsa) voltar para o Brasil — o que imediatamente traz a seguinte pergunta à tona: “Com esses cortes, será que haverá empregos para esses bolsistas? Ou será que eles simplesmente vão ficar desempregados depois de voltarem? Há planos para a absorção desses bolsistas?” E por aí afora…

Portanto, a notícia soa boa, mas sem os devidos detalhes fica difícil de se saber o quão realista isso tudo é.

Reproduzo aqui o artigo do Chronicle em sua integridade.

Brazil Reaches Out

July 5, 2011, 12:14 pm, By Nigel Thrift.

In Brazil on a delegation with the Deputy Prime Minister and the Minister of State for Universities and Science. As usual with these delegations, they tend to be a mixture of frenzied last-minute reorganizations and moments of formal ceremony. They certainly require serious stamina occasioned by crammed programmes and non-stop travel.

But this delegation was buoyed by the Brazilian government’s announcement of 75,000 studentships to study abroad over the next four years, each worth $30,000, of which the UK looks set to obtain a good number.

What is striking about Brazilian higher education its range and variety. There are numerous private institutions, some of which are of good quality. There are state universities. There are federal universities. There are a number of federal science and technology institutions like CAPES, along with many national institutes of science and technology. There are a number of companies (most notably Petrobras and Embraer) which have close associations with universities. I was able to visit the University of Sao Paulo, an august institution boosted by the fact that a proportion of the State of Sao Paulo’s sales tax goes to universities (other countries take note).

What became clear to me was that Brazilian higher education is now in a state of take-off. Brazilian research is often world class. It is the 13th biggest knowledge producer as measured by numbers of papers. In particular, Brazilian research in is paramount in fields like engineering and aspects of the biological sciences.

In a meeting with luminaries from the world of Brazilian higher education, what was clear was that they are bullish about the future and that the scholarship scheme is a tangible expression of that optimism, as well as a desire to diversify the locations in which students study (which are currently led by the United Sates and France).

What is very different from many other countries which are now in economic take-off is that Brazil already has a thriving university system which has achieved many successes. It needs to expand its higher education system rapidly but the goal that has been set for participation rates seems entirely possible. In fact, it is about the same rate of expansion as the UK has achieved over the last 30 years.

There are clearly still problems. For example, the elite universities tend to be populated by students from well-off backgrounds. But Brazil is hardly the only country that can be accused of that. Again, there is very considerable variation in quality. Again, Brazil is hardly the only country that can be accused of that. It has a shortage of researchers to match its ambitions. Once more, Brazil is hardly the only country that can be accused of that.

In other words, this cannot be seen as a situation in which a country needs “help.” Rather, it requires a partnership of equals in which the non-Brazilian partner realizes that the Brazilian partner has much more to offer than the prospect of studentships abroad. Those studentships are a sign off greater engagement but an engagement that will be a two-way process right from the very start.

Estrutura de bandas, ARPES e o LNLS 2

domingo, 15 mai 2011; \19\UTC\UTC\k 19 Deixe um comentário

Hoje em dia, muito do que se é feito sobre desenvolvimento e caracterização de novos materiais para nanoeletrônica (nanotubos de carbono, nanofios, grafeno, isolantes topológicos, …) pode ser entendido através da estrutura de banda. Em especial, as propriedades eletrônicas, magnéticas, químicas e ópticas dos materiais são determinadas por este tipo de informação. Entretanto, aqui no Brasil, determinar uma simples estrutura de banda não é tão simples quanto parece.

Estrutura de bandas

Quando estamos estudando sistemas periódicos como sólidos (1D, 2D ou 3D) a “dinâmica” dos elétrons (de valência) no material pode ser descrita através de um Hamiltoniano periódico

H = \displaystyle\sum_{\vec{R}} H_{\vec{R}},

onde \vec{R} são os vetores da rede de Bravais e H_{\vec{R}} é o Hamiltoniano dos elétrons numa única célula unitária localizada em \vec{R}.

Por ser periódico, uma das maneiras mais naturais de diagonalizar o operador Hamiltoniano é tomando a transformada de Fourier dele no espaço-k, o espaço dos vetores de onda. Assim, o Hamiltoniano toma a forma

H = \int_{BZ}\frac{d^3k}{(2\pi)^3} \mathcal{H}(\vec{k}).

A diagonalização de \mathcal{H}(\vec{k}) fornece o espectro (conjunto de todos autovalores) \{ \epsilon_n(\vec{k})\} que são chamadas comumente de estrutura de bandas. Plotando estas várias funções \epsilon_n(\vec{k}) por caminhos que passam pelos pontos de alta simetria da zona de Brillouin vamos obter algo como na Fig. 1, isto é um exemplo do que chamamos de estrutura de bandas.

Figura 1. Estrutura de banda do {\rm Bi}_2{\rm Se}_3, sem SOC.

Os estados eletrônicos que estão abaixo de uma certa energia (energia de Fermi)  são estados ocupados, os que estão acima são estados desocupados. Estas estruturas de bandas são únicas de cada material, e é através dela que determinamos as propriedades eletrônicas, magnéticas, químicas e ópticas dos novos materiais que estão surgindo.

Existem vários métodos teóricos para calcular este tipo de estrutura de bandas. Por exemplo, eu costumo usar métodos ab initio baseados na Teoria do Funcional da Densidade, ou modelo Hamiltonianos no formalismo de segunda quantização (espaço de Fock) como o método tight binding. Mas como um experimento pode confirmar isto?

ARPES

Do ponto de vista experimental uma das mais diretas de determinar isto é usando o método ARPES (Angle Resolved Photoemission Spectroscopy). Este método consiste numa espectroscopia de fotoemissão que mede as energias e momentos dos elétrons emitidos pelo material com uma resolução angular. Isto permite construir a dispersão da banda e a energia de Fermi do material. O esquema de como esta medidas são feitas é mostrado na Fig. 2.

Figura 2. Setup experimental do ARPES.

Embora tenham conceitos simples, os equipamentos necessários precisam de boas precisões. E aqui no Brasil ainda não há nenhum lugar que possa fazer uma medida ARPES. Quem mais tem capacidade de fazer isso é o LNLS (Laboratório Nacional de Luz Síncrotron), mas é necessário de um outro anel síncroton mais moderno para tornar este tipo de medida uma realidade.

LNLS 2

Há algum tempo estão falando numa construção de um outro anel para o LNLS. Este novo anel, batizado de Sirius, teria energia de 3 GeV, seria mais brilhante e teria também um espectro de energia mais amplo. Neste anel seria possível fazer medidas ARPES. O LNLS 2 (ou Sirius) traria outras vantagens além do ARPES, mas este tipo de upgrade é que eu estou mais atualizado, alguém de dentro do LNLS poderia informar melhor todas as outras vantagens. Alguns detalhes do novo anel podem ser encontradas no link: http://www.lnls.br/sLista-108/Sirius.aspx

Entretanto esta obra tem um custo um pouco elevado, R$ 360 milhões que seriam investidos ao longo de 3 anos. Este tipo de investimento é mais importante do que construir um estádio novo pra Copa do Mundo ou pra Olimpíada, mas não é tão falado quanto eles. O Brasil PRECISA deste tipo de investimento pra continuar evoluindo na ciência como todo mundo deseja, mas por enquanto só nos resta esperar que isto realmente saia do papel.


Como a Ciência escapou da Foice do Orçamento — até agora…

segunda-feira, 9 mai 2011; \19\UTC\UTC\k 19 1 comentário

O original, pode ser encontrado aqui: How Science Eluded the Budget Ax — For Now (DOI: 10.1126/science.332.6028.407).

É importantíssimo de se colocar esta notícia em comparação não só com os cortes oçamentários americanos, mas também com os cortes brasileiros: Brazil cuts its science budget, Brazil’s budget cut dismays scientists. De fato, duas comparações bastante interessante são as seguintes: percentual do corte orçamentário (o Brasil cortou o orçamento de Pesquisa e Desenvolvimento em ~13%), e proporção do investimento em Pesquisa e Desenvolvimento em relação ao PIB (o Brasil investe ~1.25% do PIB em Pesquisa e Desenvolvimento).

É dentro deste contexto que a crise econômica mundial foi apenas uma “marola” no Brasil…

When details of the 11th-hour budget compromise that kept the U.S. government running emerged last week, it became clear that science programs fared relatively well. True, most research agencies will have less to spend this year than they did in 2010 (see table), and the totals generally fall well short of what President Barack Obama had requested when he submitted his 2011 budget 14 months ago. But the legislators and Administration officials who struck the spending deal managed to slice $38.5 billion from a total discretionary budget of $1.09 trillion without crippling research activities. How did that happen?

US Research Funding Budget

First and foremost, both Republicans and Democrats were working off a quiet but powerful consensus on the importance of science to economic prosperity. Last fall, Congress authorized steady increases for three key science agencies in a renewal of the America COMPETES Act, and Obama’s recent statements on the 2011 negotiations emphasized the need to continue investing in clean energy and medical research as the overall budget is cut. Second, Senate Democratic leaders had crafted a spending plan in March that, although it failed to pass the full Senate, showed how it could be done. Finally, the so-called cardinals, who chair the 12 appropriations panels in the House of Representatives and the Senate that oversee every federal agency, found ways to protect research while trimming other programs to satisfy the deal’s bottom line.

“There was no magic to it,” explains Representative Frank Wolf (R–VA), whose panel has jurisdiction over the National Science Foundation (NSF), NASA, and the National Oceanic and Atmospheric Administration and the National Institute of Standards and Technology within the Commerce Department. “Science has been a priority for me and the other longtime members of the committee because you’re talking about jobs and about helping America maintain its economic leadership,” says the veteran legislator, who entered Congress in 1981. “There has not been any controversy about this.”

His appropriations counterpart, Senator Barbara Mikulski (D–MD), says she hopes that consensus will translate into “smart cuts that don’t cost us our future. I support science funding that can spur American discovery and ingenuity to create jobs for today and jobs for tomorrow.”

Of course, a passion for science wouldn’t have been enough to carry the day without the numbers to back it up. That’s clear from the actions of the commerce, justice, and science (CJS) panels that Wolf and Mikulski lead.

In February, the Republican-led House passed H.R. 1, which slashed $61 billion from current federal discretionary spending. For Wolf’s spending panel, that translated into $8 billion less than the committee dispensed in 2010. Divvied up among dozens of agencies, the $52.7 billion number forced Wolf to cut $360 million from NSF’s $6.87 billion budget, for example, and $600 million from NASA’s $18.7 billion budget.

In contrast, the 2011 spending plan devised by Senate Democrats gave Mikulski’s CJS panel $53.6 billion to work with. That $900 million difference allowed Mikulski to be kinder to the research agencies under her jurisdiction. It pared $75 million from NSF’s budget and even provided a slight boost to NASA.

“Nineteen billion dollars was authorized, and $19 billion is what I put in my appropriations bill,” Mikulski said at a hearing last week on NASA’s 2012 budget request, referring to both a reauthorization of NASA programs that was enacted last fall and the Senate plan for 2011. “But my [spending] bill died, so NASA won’t get $19 billion.”

The 8 April budget agreement resulted in a CJS allocation of $53.3 billion for each panel. And although that figure is a bit lower than the earlier Senate version, it was enough to turn the two chairs’ support for science into fiscal reality. The Senate bill was a “guide-post showing what could be done within that allocation level,” says a senior staffer at one federal research agency. “Having the Senate offer a road map made a huge difference.”

Wolf says he was happy to be able to deliver most of what science lobbyists had sought for agencies within his jurisdiction. “I thought science ended up pretty well,” Wolf says about the final bill, pointing out that it ranked with the FBI’s fight against global terrorism as his top priority. In contrast, federal support for local and state law enforcement assistance took a big hit, as did other Justice Department programs.

Mikulski believes she did the best she could under the circumstances. But she isn’t happy with the fate of NASA, which employs thousands at its Goddard Space Flight Center outside Washington, D.C., in suburban Maryland. “NASA won’t even get the $18.7 billion it got in 2010,” she said at last week’s hearing. “Simply put, NASA will be cut more.”

With the 2011 budget finally put to bed, Congress is turning to the budget for the 2012 fiscal year that begins on 1 October. In addition to the political bickering over how to reduce a $1.5 trillion annual deficit, legislators will have to deal with the domino effect of the 2011 cuts, as activities that needed increases this year to remain on schedule will be delayed. NSF’s final budget, for example, cuts $48 million from its request to continue building a half-dozen major research facilities, including the newly launched Ocean Observatories Initiative and the National Ecological Observatories Network. A shrunken 2011 budget also means even bigger headaches for NASA’s troubled James Webb Space Telescope.

Striking a positive note, Mikulski told NASA Administrator Charles Bolden last week that “NASA will need to work harder and smarter to accomplish its inspiring mission within a smaller budget.” Wolf was less sanguine. Asked what scientists should do to maintain support for federally funded research in these fiscally stringent times, he offers a one-word strategy: “Pray.”

O Movimento dos Jovens Acadêmicos…

terça-feira, 26 abr 2011; \17\UTC\UTC\k 17 Deixe um comentário

O original, pode ser encontrado aqui: The Young Academy Movement (DOI: 10.1126/science.1206690).

I have often argued on this page that scientists need to do more than simply advance their individual research projects. Maintaining excellence in the global scientific enterprise will require constant adjustments to policies and programs. In addition, much more outreach by scientists will be needed to make science better understood by the general public and by governments. Promising progress toward both of these goals comes from a movement that is forging new organizations of young scientists—the “young academies”—around the world. A few weeks ago, a new international organization, the Global Young Academy, held its initial meeting in Berlin to discuss spreading the idea to many more nations (www.globalyoungacademy.org). This effort deserves full support from of all of society.

In 2000, a new type of organization, Die Junge Akademie (the Young Academy), was created as a joint venture by two German academies. This Young Academy was described as “an organization intended to harness the resources of both academies in ways that would fertilize research fields with new ideas and bolster career pathways, as well as invigorate older academies by involving the young scientific community in critical policy-related work.”* In 2005, a similar Young Academy was established in the Netherlands. The success of these two experiments has recently inspired six other nations to create their own Young Academies: Egypt, Nigeria, Pakistan, Sudan, Thailand, and Uganda; all nations where the tolerance and rationality inherent to science will be invaluable.

I see this empowerment of young scientists as the next step in a process that began in 1993 in New Delhi, when the national academies of sciences from more than 60 nations came together to develop a coherent scientific position on world population issues in preparation for the major 1994 United Nations International Conference on Population and Development in Cairo. This first-ever meeting of the world’s science academies soon created the InterAcademy Panel (IAP), now a vibrant global network of more than 100 member academies (www.interacademies.net). The IAP functions as a mutual support organization for the existing science academies around the world.

But the empowerment of national science academies with distinguished, well-established members can leave a gap between these influential organizations and the young, dynamic scientists who represent the future in each nation. This is precisely the gap that has been filled by the Young Academies: each a group of fewer than 200 scientists, typically selected by their national science academies to serve in 4-year leadership roles. Through its connection to a prestigious national science academy, each Young Academy is empowered to exert national leadership in advancing science through projects that the young scientists themselves determine. These young scientists can often be more effective than their older peers in interactions with society and with politicians. They also bring new energy to these interactions, with a better gender balance due to the advances that women scientists have made in recent decades.

By bringing together outstanding scientists from many different disciplines, Young Academies catalyze the formation of multidisciplinary scientific collaborations that generate innovative new discoveries. Participation in a Young Academy also strengthens a nation’s scientific enterprise by training its next generation of leaders. The work exposes them to important policy issues while building networks of trusted personal relationships that can bridge disciplines for a lifetime. And by providing a shortcut for outstanding young scientists to exert national leadership, Young Academies can be highly effective in recruiting a nation’s most talented students to scientific careers—a critical issue for the future of every nation.

By fusing the promotion of the larger goals of science with an integration of young scientists into public service, the Young Academy movement is well positioned to drive the creation of the tolerant, rational societies that the world so badly needs.

O DOE cancela uma iniciativa massiva de treinamento…

segunda-feira, 25 abr 2011; \17\UTC\UTC\k 17 1 comentário

Quem quiser ler o original, pode encontrá-lo aqui: DOE Pulls the Plug on Massive Training Initiative (DOI: 10.1126/science.332.6026.162-a). DOE é uma abreviação, em Inglês, para “Department Of Energy”, que é o órgão americano análogo ao Ministério das Minas e Energia no Brasil. Historicamente, esse é o órgão que patrocina a pesquisa científica em Física de Partículas (pense em termos da Segunda Guerra Mundial) — no Brasil, esse papel é feito pelo Ministério de Ciência e Tecnologia (através do CNPq e CAPES).

In April 2009, President Barack Obama announced an ambitious education and training initiative at the Department of Energy (DOE). Speaking to members of the U.S. National Academy of Sciences, Obama said a proposed 10-year, $1.6 billion program, dubbed “Regaining our Energy Science and Engineering Edge” (RE-ENERGYSE), would “capture the imagination of young people who can help us meet the energy challenge.”

But RE-ENERGYSE never got off the ground. Congress twice declined to fund any portion of its sprawling vision, which would have included graduate and postdoctoral fellowships, summer research projects for undergraduates, professional master’s degrees in clean energy, and associate degree programs to train a clean-energy technology workforce. In February, the White House threw in the towel, dropping the program from DOE’s 2012 budget request.

Energy Secretary Steven Chu insists that the Administration remains gung ho about attracting more students into the field of clean-energy research. But its 2012 budget request signals a major shift. Instead of RE-ENERGYSE, Chu is now touting expansion of a small graduate fellowship program that is run out of an office different from the one responsible for implementing RE-ENERGYSE.

To understand why RE-ENERGYSE never got off the ground, it helps to understand DOE’s checkered history in science education. Although some previous Administrations tried to carve out a larger role for DOE in this arena, Congress has traditionally seen education as a secondary mission for a department that already has major responsibilities for science, energy, national security, and environmental cleanup. So the broad scope of RE-ENERGYSE was a red flag for some influential legislators, who also wondered why it was under the jurisdiction of the energy undersecretary when existing education and workforce-training efforts were overseen by the science undersecretary (Science, 10 July 2009, p. 130).

Kristina Johnson, the former energy undersecretary whom Chu asked to manage RE-ENERGYSE, says that it seemed clear to her. “It’s a national imperative, and the president is strongly behind it,” she explains. “So I came in, very wide-eyed, and said we should do this. As an engineer, I like to set a goal and put in place a plan and then carry it out. It’s really pretty simple.”

Although Chu tried to explain the program to legislators when testifying on DOE’s 2010 budget, Congress eliminated his request for $115 million when it approved DOE’s overall budget. The next year’s request, for $55 million, fared no better. And last October, Johnson, a former engineering dean and successful entrepreneur who joined the Administration in May 2009, left DOE and now consults for energy companies. “When she left, RE-ENERGYSE was gone, too,” says one DOE official. The Administration made it official by removing the initiative from its 2012 budget.

“There are broad STEM workforce–development programs across the federal government,” says Carl Wieman, associate director for science at the White House Office of Science and Technology Policy, in explaining the decision. “And there are plenty of other opportunities to improve STEM education.” Wieman, a physics Nobelist and science educator who joined the Administration last fall, says that RE-ENERGYSE “may have been comprehensive, but that also makes it complex to set up and make work. So the decision was that we’ll find something that Congress is happier with and move on.”

That something, Chu says, is a request for $11 million in 2012 to more than double the number of graduate research fellows supported by DOE’s Office of Science. It’s the most direct way to beef up the nation’s clean-energy workforce, he says: “The pipeline starts early, by getting [elementary and secondary school students] interested in science. But [educating] undergraduates and those in graduate school, this is something that we feel very strongly about.” Some 150 fellows are now funded under a program begun in 2009. Last month, DOE also announced a competition this year to award 20 postdoctoral fellowships for research on clean-energy technologies.

A história evolutiva do homem

terça-feira, 19 abr 2011; \16\UTC\UTC\k 16 1 comentário

A um tempo atrás eu assisti um documentário fantástico da PBS, daquela mesma série que fez o documentário do Universo Elegante, foi o Becoming Human (tradução livre: “Tornando-se humano”). É o melhor documentário que já vi sobre a evolução do homem, recomendo. O filme completo de 3h está no YouTube aqui, em inglês. Não consegui achar legendas em Português. Ele também está disponível integralmente no site da PBS, mas provavelmente bloqueado para IPs dos EUA.

É verdade que meus conhecimentos do assunto são de Zé, o que aprendi na escola e em alguns livros de divulgação, mas o documentário é muito bem fundamentado por especialistas. Conta-se em detalhes a história dos paleontólogos e suas descobertas, com um enfoque grande em como são extraídas conclusões com base nos fósseis, genética e geologia. O documentário traça as espécies de hominídeos conhecidas e que passo da evolução cada uma deu. Fala-se sobre quais são os marcos da evolução dos primatas que acredita-se serem os pontos mais importantes que levaram a diferenciação do humano moderno, como o aumento da infância, a postura ereta, a adaptação para resistência a corrida em caça, o desenvolvimento da arte, a invenção da cozinha, a quase extinção do gênero Homo e a ascensão da adaptação a diferentes ambientes do Homo sapiens. Há bastante informação científica de qualidade. O filme também é atual, de 2009, e contém os avanços mais recentes como o sequenciamento do DNA dos neandertais. Vale a pena assistir!

Entropia e formação de complexidade no universo

domingo, 17 abr 2011; \15\UTC\UTC\k 15 4 comentários

Distribuição de massa no universo prevista pela Relatividade Geral, rede cósmica. As cores indicam densidade de massa, com o preto ao púrpuro ao amarelo indicando região menos a mais densa. A escala indica cerca de 44 Mpc. Uma galáxia tem cerca de 10 Kpc de diâmetro.

Quando nós olhamos para um vídeo em que um omelete se transforma em um ovo de galinha, nós sabemos que o filme está sendo exibido de trás para frente, porque no universo a entropia sempre cresce. Uma pergunta muito natural então é: como foi possível que o universo tenha formado estruturas como as galáxias e os planetas, e depois a vida na Terra, quando formar estruturas complexas parece desafiar a segunda lei da Termodinâmica?

É importante entender que a pergunta é capciosa, porque ela é baseada em uma premissa falsa: a de que a Termodinâmica é válida universalmente. Na realidade, a Termodinâmica é uma aproximação para descrever sistemas quando eles podem atingir rapidamente um estado em que suas variáveis não dependem mais do tempo. Muitas vezes isso não é possível, e a Termodinâmica é inaplicável. Isso é o caso para maior parte dos processos que ocorrem no universo. Esse tipo de fenômeno se denomina fora do equilíbiro térmico.

A formação das galáxias é um exemplo. A termodinâmica não se aplica porque o campo gravitacional depende do tempo. E o processo é complicado pela contínua aglomeração de massa que o campo gravitacional provoca. A redistribuição de massa no espaço muda de volta o campo gravitacional. O efeito combinado ao longo do tempo forma a rede cósmica, da qual eu já comentei outras vezes no blog. Do ponto de vista da Termodinâmica, a formação das galáxias pode parecer uma incógnita, mas é porque a origem das galáxias vem da dinâmica do campo gravitacional.

Outros dois exemplos importantes são a formação dos núcleos atômicos e a formação da radiação cósmica de fundo. Se nós fossemos usar a Termodinâmica em Cosmologia para descrever esses processos, iríamos obter respostas incorretas. Na formação do hélio, por exemplo, vê-se que a abundância do hélio em equilíbrio termodinâmico se torna relevante quando a temperatura é cerca de 3.5×109 K, e a Termodinâmica prevê que cerca de 31% dos bárions deveria estar em forma de hélio hoje. O valor correto é mais próximo de 25-27%. A Termodinâmica falha porque a formação do hélio precisa competir com o fato de que a densidade de prótons e nêutrons está decaindo no tempo. Os prótons e nêutrons vão se tornando menos densos por causa da expansão do universo. A formação do hélio não dura para sempre porque eventualmente a densidade é tão baixa que não permite mais reações nucleares ocorrerem. Além disso, a formação do hélio depende da presença dos nêutrons, que decaem rapidamente a medida que as reações nucleares perdem força para converter prótons em nêutrons. Se abdicarmos da Termodinâmica e calcularmos o processo dependente do tempo, chegaremos ao valor correto de 27%. A radiação cósmica de fundo se forma por um processo similar de competição em que os elétrons livres que ainda espalham fótons por efeito Compton vão desaparecendo ao serem capturados pelos núcleos para formar os átomos neutros de hidrogênio e hélio.

Quando nós não podemos usar a Termodinâmica para reações físicas mas ainda se quer fazer contas para um número grande de partículas, se usa física estatística fora do equilíbrio onde a dinâmica é comandada pelo que genericamente se chama equações de Boltzmann. O nome de Boltzmann deve indicar como já se sabia faz tempo as limitações da Termodinâmica.

O propósito desse comentário é o seguinte: não é necessária nenhuma mágica para entender como se formam estruturas complexas no universo onde vale a segunda lei da Termodinâmica. Basta aplicar as leis físicas relevantes para o processo microscópico (no caso da formação dos núcleos é a física nuclear, da formação das galáxias é a Relatividade Geral). A Termodinâmica é uma aproximação que nem sempre descreve todas as variáveis físicas, só aquelas que se tornam independentes do tempo.

O universo é quântico II, novas divergências em TQC

terça-feira, 5 abr 2011; \14\UTC\UTC\k 14 5 comentários

Será que existem divergências em teorias quânticas de campos (TQC) em espaços-tempo curvos que não podem ser removidas por renormalização?

Como o título já deve dar a entender, esse segundo post já vai ser sobre um aspecto técnico.

Leia mais

CMS e ATLAS esperam descobrir o Higgs até 2012

quinta-feira, 31 mar 2011; \13\UTC\UTC\k 13 5 comentários

Detector CMS em fase de montagem em 2008. Foto: Michael Hoch.

Hoje a Physics World publicou uma entrevista com Guido Tonelli, porta-voz do experimento CMS, e Pippa Wells, porta-voz do ATLAS. Ambos afirmam que CMS e ATLAS darão uma resposta definitiva para a existência do bóson de Higgs até final de 2012. A expectativa é que os dados do LHC de 2011 e de 2012 serão necessários para poder vasculhar o Higgs em toda a janela de massa que ele pode existir, que é atualmente de 115 a 600 GeV (para uma comparação, a massa do próton é aproximadamente 1 GeV). O Higgs é a única partícula do Modelo Padrão que ainda não foi positivamente detectada.

Leia mais…

Novo livro de Miguel Nicolelis

quarta-feira, 30 mar 2011; \13\UTC\UTC\k 13 1 comentário

O neurocientista brasileiro Miguel Nicolelis publicou recentemente nos Estados Unidos um novo livro de divulgação científica sobre seu trabalho: Beyond Boundaries (trad. livre: Além das fronteiras, A nova neurociência que conecta cérebros a máquinas). O livro já está disponível para compra nos EUA e tem seu próprio blog com fotos e filmagens referentes a pesquisa do grupo.

Ontem, Nicolelis deu uma entrevista sobre o livro no Daily Show com Jon Stewart. Durante a entrevista, Nicolelis fala sobre o projeto o qual ele está envolvido de construir um exoesqueleto robótico para pessoas com paralisia de membros que poderia ser controlado exclusivamente com pensamentos, sem necessidade do indivíduo apertar nenhum botão. Isso seria a extensão para humanos do trabalho demonstrado com macacos (que também apareceu na palestra TED do post anterior).

Atualizarei o post quando eu tiver notícia de uma edição em português. Se você não quiser esperar, pode comprar inglês importado em uma livraria. Por exemplo, aqui.

Atualização 1, 16/06/2011: o livro em português no Brasil entitula-se Muito além do nosso eu e já está disponível nas lojas.

Quando chega a hora de questionar a bioengenharia?

segunda-feira, 28 mar 2011; \13\UTC\UTC\k 13 4 comentários

Wow. Esta palestra é de assustar…

Da TEDxPeachtree, Paul Wolpe, especialista em bioética, lista alguns dos experimentos contemporâneos que modificaram seres vivos e exploraram as mais diversas manipulações de organismos… de cérebros mantidos vivos para controlar robôs a mariposas controladas por controle remoto.

As cidades mais científicas do mundo…

sábado, 19 mar 2011; \11\UTC\UTC\k 11 Deixe um comentário

O Physics arXiv blog publicou uma matéria interessante. Mas, antes de falar da notícia, eu tenho que avisar que não estou entre os maiores fãs desse blog — na verdade, minha opinião flutua bastante: alguns artigos são bons, outros ficam bem longe disso… mas, em todos os casos, o Physics arXiv blog é bem enviesado (a seleção dos tópicos que aparecem por lá deixa isso claro além de qualquer dúvida, isso pra não falar sobre o nível das discussões, sempre bem ‘passageiro’) — e isso sempre me incomoda muito.

De qualquer forma, e sem mais delongas… eis o artigo: Mashups Reveal World’s Top Scientific Cities. O original pode ser lido diretamente nos arXivs: Which cities produce worldwide more excellent papers than can be expected? A new mapping approach—using Google Maps—based on statistical significance testing.

A discussão no ‘Physics arXiv blog’ não passa de “mais do mesmo”: ciênci-o-metria. Infelizmente, perde-se a chance de se avaliar o artigo propriamente dito, escolhendo-se apenas notificar a “mensagem” contida no mesmo. Parece até mesmo um órgão de Relações Públicas, apenas alardeando e propagandeando.

O artigo propriamente dito é de tão baixa qualidade que a vontade que se tem é de apenas se repetir o adágio invisível, que diz que os artigos dos arXivs não escritos em [La]TeX são sempre de qualidade duvidosa — pior ainda quando são escritos em Word, ou algum editor de pior qualidade ainda; sem identação apropriada (quem ainda usa ‘identação à esquerda’, ao invés de ‘justificado’? :razz:): via de regra, a falta de atenção a esse tipo de detalhe num artigo costuma refletir a baixa qualidade do material escrito. Mas, como eu disse, esse é apenas um “adágio invisível”, uma unspoken rule, que não se vê, não se ouve, e cujo perfume não se sente. :oops: :roll:

De qualquer forma, a máquina de salsicha continua na ativa: como se mensurar o imensurável: quais trabalhos científicos têm mais qualidade, quais são mais dignos de fomento, quais têm mais impacto na comunidade?

Todas essas são questões relevantes, claro, mas uma lição que a Ciência tem que aprender com a Arte é que a medição da criatividade é algo estupidamente difícil. Aliás, nem é preciso se apelar para o lado mais humanista desta questão: basta apenas se aprender Sistemas Dinâmicos corretamente (o que, de fato, parece ser algo tão complicado quanto nos dias de hoje). A razão deste meu argumento é bem simples: como se pode avaliar algo que possui resultados de médio a longo prazo (sem esperarmos por tal prazo)?

A resposta é simples: não é possível se avaliar nada que dependa de médio a longo prazo sem esperarmos tal prazo passar e medirmos o resultado efetivo do que se deseja avaliar. Ou seja, precisamos esperar o tempo passar pra podermos sequer ter a chance de sermos justos nesta empreitada! Ou seja, falando um pouco mais rigorosamente, é preciso termos acesso a todos os dados para podermos conhecer o problema de modo completo.

Infelizmente, com a idéia de que as Universidades devem ser “profissionalizadas” (sabe-se lá o que isso significa :razz:) e, mais ainda, de que toda a empreitada científica deve ser “profissionalizada”, todo esse tipo de questão métrica se torna relevante: como se pode escolher aquilo que há de “melhor” para se fomentar? Assim como numa empresa, numa linha de montagem, é preciso haver alguma forma de “selo de garantia”, alguma forma de “controle de qualidade”. (Note que não estou falando do processo de ensino de estudantes, mas sim de pesquisa científica — falar de ensino por si só abriria outra Caixa de Pandora!)

Entretanto, ao contrário de empresas, fábricas e linhas de montagem, Universidades e Pesquisa Científica [fundamental] possuem planos de ação, missões, de longo prazo, de longuíssimo prazo: há universidades com cerca de 1000 anos de existência: quantas empresas, fábricas e linhas de montagem podem dizer o mesmo?! A própria Revolução Industrial tem apenas cerca de 250 anos!

Felizmente ou não, esta é a natureza da busca pelo conhecimento, e este é o papel da Ciência, principalmente daquela dita fundamental (que costuma dar frutos bem distante das aplicações do dia-a-dia). Por outro lado, hoje em dia, na nossa Era da Informação, é possível se converter algo tão abstrato quanto Teoria dos Grafos em compiladores e navegadores. Este é o caminho da Ciência e do Conhecimento: a menos que se tenha acesso a toda informação, só se pode ver aquilo que está no curto prazo… :wink:

Isso tudo só server pra fazer com qua a analogia posta acima — entre Sistemas Dinâmicos e Funções de Partição — fique ainda mais clara aos olhos: quando vc tem acesso à Função de Partição dum problema, vc tem em mãos toda a informação necessária pra resolver o problema completamente; no caso de Sistemas Dinâmicos, como o nome indica (dependência temporal), é muito difícil de se calcular o que vai acontecer no futuro (não-linearidades, caos, etc). E, no final das contas, tudo que se quer medir são os Fenômenos Críticos, as Transições de Fases, e as Propriedades de Escala do sistema em questão.

A mensagem é clara: sem uma visão mais global é impossível se poder qualificar e medir justamente um trabalho científico. Incontáveis exemplos, de Einstein à Wilson, todos nobelistas, jamais teriam os “índices” e os “fatores de impacto” necessários, hoje, para serem contratados em regime de ‘tenure track’ — isso é claro pra qualquer um que já tenha feito o exercício mental requerido por esta questão.

Algumas empresas e alguns nichos industriais já descobriram esse fato básico da natureza humana… aliás, no âmbito de Sistemas Dinâmicos tudo isso tem nome: Cisne Negro e Dragões Reis. :twisted:

Infelizmente, parece que esse aprendizado e essa mensagem ainda não chegaram na academia — um fato bem irônico, posto que a academia é o lugar onde tais idéias (transições de fase, cisne negros e dragões reis) nasceram! :oops: Então, por enquanto, nós ainda vamos nos debelando com índices e fatores de impacto e outras bobeiras afins. Eu gostaria que fosse feito um estudo com as revistas de maior impacto, procurando-se saber quantos dos artigos publicados nestas revistas deram origens a novos caminhos e novos ramos em seus respectivos campos da Ciência. Taí uma perguntinha bem capiciosa e que por motivos “mágicos” ainda ninguém teve a idéia de responder… :roll: (Diquinha: eu não me lembro de Einstein ter publicado na Nature nem na Science, então nem as Relatividades nem a Mecânica Quântica (ou Teoria Quântica de Campos) tiveram suas origens nas revistas ditas de alto impacto; o mesmo vale, por exemplo, para as chamadas Transições Quânticas de Fase: o Kosterlitz não publicou numa revista de alto impacto — aliás, porque ninguém pergunta pro Kosterlitz o que ele pensa disso tudo, afinal de contas ele deu origem a todo um ramo da Física, logo deve saber o que significa “alto impacto científico”, não?! :razz:)

Pra finalizar, vou apenas me resignar a dizer que a análise estatística feita no tal artigo é de baixa qualidade, não apenas porque não leva em conta os cisnes negros e os dragões reis, mas também porque não leva em conta tantos outros métodos que a tornariam bem mais robusta. É uma pena, porque os “efeitos visuais”, os “efeitos especiais”, do artigo são bem bonitinhos… [bonitinhos mas ordinários! :razz:]

[]‘s.

Atualizado (2011-Mar-19 @ 11:15h EDT): Ah… a ironia do destino. Assim que acabei de escrever o post acima, trombei no seguinte livro: Little Bets: How Breakthrough Ideas Emerge from Small Discoveries. O ponto do livro é clararamente exposto no título, mas também já foi feito por Asimov,

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not ‘Eureka!’ (I’ve found it!), but ‘That’s funny…’”

Isaac Asimov.

Experimentação, passo-a-passo, erros e mais erros… é assim que se faz Ciência: a idéia de que pesquisa e progresso é feito através duma seqüência de ‘acertos’, de passos corretos, não poderia estar mais distante da realidade… c’est la vie

Grafeno além da nanoeletrônica

quinta-feira, 17 mar 2011; \11\UTC\UTC\k 11 4 comentários

Acho que todos os leitores deste blog sabem que o isolamento de monocamadas de grafeno foi o motivo do André Geim e Kostya Novoselov terem recebido o prêmio Nobel de Física do ano passado (2010). Os comentários em jornais e alguns outros meios de divulgação tratavam o grafeno apenas como um “novo material para nanoeletrônica”. Na verdade ele é muito mais que isso, este material trouxe várias novidades que nem todos os físicos sabem. Algumas (poucas) dessas novidades estão listadas abaixo:

Isolamento de um cristal 2D estável. Há um teorema de autoria do Peierls e do Landau que cristais 2D são instáveis termodinamicamente, isto é, qualquer oscilação de energia colapsaria o cristal em uma outra estrutura. No caso do grafeno essas estruturas poderiam ser nanotubos, nanorolos ou alguma outra coisa semelhante. Entretanto, em 2004 Geim e Novoselov isolaram pela primeira vez uma única camada de grafeno. Baseando-se no grafeno, pouco tempo depois vários outros cristais 2D também foram criados como monocamadas de BN (nitreto de boro) ou monocamadas de molibdenita. Neste caso o grafeno abriu as portas para os materiais 2D.

Propriedades mecânicas do grafeno. O grafeno é um dos materiais mais “fortes” e rígidos que conhecemos. O nanotubo de carbono também é um desses materiais mais fortes conhecidos, e isso é devido a ele ser uma camada “enrolada” de grafeno, pictoricamente falando. Além da eletrônica, o grafeno também pode ser útil na Engenharia Civil. Aqui no Brasil mesmo (na UFMG) há pesquisas de cimento “fortalecido” com nanotubos de carbono. Este tipo de material deve chegar ao mercado em alguns anos.

Estrutura eletrônica do grafeno. A banda do grafeno apresenta uma relação de dispersão linear em torno do nível de Fermi, isso faz com que as quasipartículas (elétrons e buracos) se comportem como férmions de Dirac sem massa (férmions de Weyl). Isto trás algumas conseqüências como paradoxo de Klein e ausência de espalhamento reverso. Por paradoxo de Klein chamamos o tunelamento de barreiras com probabilidade 1 (100%), este fenômeno já era conhecido em mecânica quântica relativística, mas não em sistema de estado sólido. A ausência de espalhamento reverso é responsável pelo aumento de mobilidade eletrônica em algumas ordens de grandeza, que é um dos grandes interesse da nanoeletrônica.

Pseudospin e índice de vale. Além da carga elétrica e do spin, os elétrons e buracos no grafeno são caracterizados por mais dois números quânticos: o pseudospin e o índice de vale. Ambas propriedades apresentam estrutura SU(2) como o spin e podem ser manipulados como o spin é manipulado na spintrônica. Isto levou a criação da Pseudospintrônica e da Valetrônica. O pseudospin é um grau de liberdade relacionado as subredes do grafeno no espaço real,  enquanto que o índice de vale está relacionado com os pontos K e K’ no espaço recíproco. Algumas propostas de dispositivos pseudospintrônicos e valetrônicos podem ser encontrados na literatura.

Efeito Hall quântico. Quando um campo magnético intenso é aplicado perpendicular à camada de grafeno é possível de observar o efeito Hall quântico (EFQ) do material. O EFQ já é conhecido em alguns outros sistemas, mas no grafeno ele aparece de forma especial. Enquanto que nas hetero-estruturas semicondutoras este efeito só aparece em baixíssimas temperaturas (ordem de milikelvins), no grafeno este efeito surge em temperatura ambiente. Além disso, em bicamadas de grafeno também é previsto efeito Hall quântico fracionário e superfluidez de elétrons em temperatura ambiente. Há quem diga que até supercondutividade em temperatura ambiente pode surgir em sistemas baseados em grafeno.

Gap ajustável em bicamadas de grafeno. A aplicação de um campo elétrico perpendicular à bicamada de grafeno faz com que surja um gap de energia na estrutura de banda que é ajustável com a intensidade do campo. Em geral, gaps de energias em materiais semicondutores dependem exclusivamente do material e não de potenciais externo ao sistema. As bicamadas de grafeno apareceram para mudar isso.

Teorias de calibre para corrugações. O grafeno observado em laboratório não é totalmente plano, existem algumas “corrugações” nestes materiais que são responsáveis pela estabilidade desse cristal 2D, como pode ser visto na (Fig. 1). O efeito destas corrugações (curvaturas) no grafeno é explicado por modelos efetivos baseados em teorias de calibre, as corrugações criam um campo efetivo que mantém o material estável.

Fig. 1. Corrugações no grafeno.

Grafeno na medicina. Atualmente o grafeno está sendo estudado até em medicina para o tratamento de câncer, como pode ser visto em “Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Effecient Photothemal therapy“.

Além disso tudo, o grafeno apresenta também longo comprimento de relaxação de spin, o que o tornaria um bom material para spintrônica; e nanofitas de grafeno apresentam estados de borda com propriedades de isolantes topológicos, que também poderiam ser úteis para a spintrônica.

É claro que esta lista não está completa, vários outros fenômenos também podem ser observado no grafeno, vários outros ainda devem ser descobertos, mas nem tudo cabe num único post de um blog, talvez eles sejam mencionados numa outra oportunidade.

Testando o Prezi…

quinta-feira, 3 mar 2011; \09\UTC\UTC\k 09 1 comentário

Quem ainda não conhece, está marcando touca: o Prezi é uma ferramenta de apresentações bastante inovadora, chamada de zooming presentation, que tenta mudar radicalmente o fluxo duma apresentação arroz-com-feijão. :cool:

Pra quem tem emails acadêmicos (estudantes e professores), é possível se registrar no Prezi com algumas vantagens. Para maiores informações, dêm uma olhada em Contas Educacionais.

E, finalmente, quem quiser inserir uma apresentação do Prezi no WordPress… :twisted:

Diversão garantida!

Seguir

Obtenha todo post novo entregue na sua caixa de entrada.

Junte-se a 67 outros seguidores

%d blogueiros gostam disto: