Archive

Archive for the ‘Physics’ Category

Notícias da Semana…

sábado, 7 abr 2012; \14\UTC\UTC\k 14 Deixe um comentário

Nos últimos 7–10 dias, muitas notícias interessantíssimas apareceram. E vale a pena dar uma olhada no que está circulando pelo mundo afora.

  1. Brazil a Great Place to do Physics … and Other Things“: Esse primeiro link é sobre programa de intercâmbio da APS, e o caso da reportagem conta sobre um aluno que saiu da Columbia University, em NY, e foi para o CBPF, no RJ. Como diz o rapaz que fez o intercâmbio, “Given that Rio was one of Richard Feynman’s favorite places, I was sure the experience would be very interesting, and I quickly became excited about it.”. 🙂
  2. Brown University forges research partnership in Brazil“: Esse segundo link é sobre a parceria que a Brown University assinou nessa semana com o IMPA (RJ). A parceria, promovida pela doação de um pai dum aluno da Brown, vai promover a colaboração em pesquisas, conferências e intercâmbios entre a Brown e o IMPA pelos próximos três anos.
  3. Open grad program allows students to pursue two fields“: Esse terceiro link é sobra um programa piloto que a Brown abriu esse ano e que poderia ser resumido como “Ciências Moleculares para a pós-graduação”. A Brown tem um currículo de graduação aberto, como o do Ciências Moleculares, desde os anos 70. E, agora, eles decidiram aplicar o mesmo princípio para a pós-graduação. A idéia é de que os alunos selecionados para participar desse experimento irão cursar seus respectivos doutoramentos, que será complementado com um mestrado em alguma outra disciplina. (A Brown permitia que seus alunos tirassem um ‘double-masters’, i.e., um duplo-mestrado até alguns anos atrás, quando essa opção foi cancelada em favor dessa nova empreitada multi- e inter-disciplinar.) E é disso que trata a reportagem, desse experimento em se ter um currículo multi- e inter-disciplinar na pós-graduação. Até onde eu conheço, essa é uma atitude completamente pioneira e que não existe em nenhuma outra escola. 😈
  4. How the Modern Physics was invented in the 17th century, part 1: The Needham Question“: Essa é a primeira parte (de um total de 3) de um blog convidado da SciAm, contando a história da Física moderna. Muito interessante.
  5. How Much Is a Professor Worth?“: Essa matéria do NYT trata do tópico de um novo livro que tenta comparar o salário de professores em diferentes países. Vale a pena ler pra ver em qual posição o Brasil se encontra, e como os diferentes países se comparam. Há muitos detalhes a serem analisados nessa questão todo… mas, de qualquer maneira, é um bom começo.
  6. Sociedade Brasileira de Física — Cortes no orçamento de ciência ameaçam futuro do Brasil“: o governo decidiu cortar o orçamento em cerca de 33% (comparado ao orçamento de 2010), entrando em rota de colisão com diversas conquistas recentes da política científica federal.
  7. Carnaval Is Over“: Seria esse o fim do milagre brasileiro? A FP faz uma lista dos vários fatores que influenciam essa questão.

Parcerias científicas internacionais, flexibilização do currículo da pós-graduação, história da Física, cortes do orçamento de ciência e tecnologia, e futuro econômico do país. Todas notícias relevantes e contemporâneas.

“E agora, José?”

Adivinha quem é…?

sábado, 1 out 2011; \39\UTC\UTC\k 39 Deixe um comentário

"3 Mosqueteiros"

Pra quem gosta de quebra-cabeças, e conhece os envolvidos na ‘descoberta’ do chamado Bóson de Higgs, fica essa dica do blog do Ian Sample: quem são esses personagens do livro Massive?

PS: Eu tenho mais dessas fotos… conforme os palpites forem aparecendo, eu ponho mais alguma(s). 😈

Uma visão da DPF2011…

sábado, 13 ago 2011; \32\UTC\UTC\k 32 Deixe um comentário

Erwin Schrödinger: vivo ou morto…

quinta-feira, 11 ago 2011; \32\UTC\UTC\k 32 3 comentários

No dia 12 de Agosto de 1887 nascia o bebê Erwin Schrödingerironicamente, até o momento do nascimento, a mãe dele não sabia se ela estava grávida ou não. 😈

[N.B.: Pra quem achou a piadinha acima infâme… tem uma melhor ainda hoje: Nova animação da Pixar: Start UP, a história de um velhinho que queria levantar sua empresa com bolhas da internet. tá-dá-tush… :mrgreen:]

Conferência da Divisão de Partículas e Campos de APS…

segunda-feira, 8 ago 2011; \32\UTC\UTC\k 32 Deixe um comentário

Hoje (segunda-feira, 08-Ago-2011) começa a edição de 2011 da Conferência da Divisão de Partículas e Campos da American Physical Society.

O programa da Conferência pode ser encontrado no link de ‘Schedule’ da mesma.

Mais ainda, os “proceedings” da Conferência serão publicados através do eConf.

Há também uma página para a Conferência no Indico do CERN, DPF2011 @ Indico/CERN. (A razão pra essa duplicação de esforços está fora da minha alçada (coisas da dicotomia de se passar o tempo dividido entre duas insituições) — quando me chamaram pra ajudar na organização da DPF2011 esse tipo de decisão já havia sido tomada. :razz:)

De qualquer maneira, essa página no Indico contém links para os Resumos das palestras e posteres, índice dos autores e palestrantes. Em particular, nestas listagens e índices é possível se encontrar os PDF que já foram carregados para o servidor.

Eu e o Rafael estamos atendendo a DPF2011. Então, vcs podem esperar por twittadas, fotos, posts, etc, etc, etc… provavelmente não no estilo “cobertura ao vivo”, uma vez que tudo vai ser meio corrido, mas fica aí aberto o canal pra quem quiser fazer perguntas ou participar de alguma outra maneira. 😉

Materiais em poucas dimensões

terça-feira, 2 ago 2011; \31\UTC\UTC\k 31 Deixe um comentário

Em Física de altas energias (na verdade altíssimas energias) é comum encontrar alguns modelos ou teorias onde a dimensão do espaço físico (ou espaço-tempo) é alterada.  Em geral, aumentam-se o número de dimensões e compactificam as dimensões extras em diâmetros minúsculos para que só possam ser acessadas somente com os próximos aceleradores de partículas. Se fossem maiores já teríamos visto estas dimensões extras.

Em Nanociência o número de dimensões também pode variar, e ser diferente de três. Mas neste caso a contagem de dimensões é feita no espaço-k. Um material com relações de dispersões em n direções é dito ser n-dimensional (ou nD). Algumas pessoas preferem se referir a estes materiais como quasi-nD, para não confundir com o espaço real nD.

Por exemplo, um cristal 3D é formado pela repetição de uma célula unitária em três dimensões. Como há condições periódicas de contorno, suas propriedades eletrônicas (funções de onda, autoenergias, DOS) serão mapeadas num espaço-k de dimensão 3. Na superfície deste mesmo cristal 3D, uma das condições de periodicidade é perdida, fazendo o espaço-k desta região ser reduzido em uma dimensão também.

Alótropos de carbono de várias dimensões.

Para os alótropos de carbono, entre algumas das estruturas de baixa dimensionalidade (n<3) estão a molécula de Fulereno (0D), nanotubos de carbono (1D), nanofitas de grafeno (1D) e grafeno (2D). As bicamadas (ou multicamadas) de grafeno também são consideradas 2D, já que embora haja átomos de carbono distribuídos espacialmente em três dimensões, só há periodicidade em duas. Isto acaba se refletindo na zona de Brillouin, enquanto multicamadas de grafeno têm zona hexagonal (no plano), o grafite tem um prisma hexagonal. As superfícies (ou hiper-superfícies) da estrutura de bandas também são diferentes nestes dois materiais.

O conceito de dimensionalidade de uma nanoestrutura é simples, mas não é incomum ver algumas pessoas (as vezes até professores) errando isto. Mas pra corrigir isto sempre podemos recorrer ao velho e bom teorema de Bloch.

Entropia e formação de complexidade no universo

domingo, 17 abr 2011; \15\UTC\UTC\k 15 4 comentários

Distribuição de massa no universo prevista pela Relatividade Geral, rede cósmica. As cores indicam densidade de massa, com o preto ao púrpuro ao amarelo indicando região menos a mais densa. A escala indica cerca de 44 Mpc. Uma galáxia tem cerca de 10 Kpc de diâmetro.

Quando nós olhamos para um vídeo em que um omelete se transforma em um ovo de galinha, nós sabemos que o filme está sendo exibido de trás para frente, porque no universo a entropia sempre cresce. Uma pergunta muito natural então é: como foi possível que o universo tenha formado estruturas como as galáxias e os planetas, e depois a vida na Terra, quando formar estruturas complexas parece desafiar a segunda lei da Termodinâmica?

É importante entender que a pergunta é capciosa, porque ela é baseada em uma premissa falsa: a de que a Termodinâmica é válida universalmente. Na realidade, a Termodinâmica é uma aproximação para descrever sistemas quando eles podem atingir rapidamente um estado em que suas variáveis não dependem mais do tempo. Muitas vezes isso não é possível, e a Termodinâmica é inaplicável. Isso é o caso para maior parte dos processos que ocorrem no universo. Esse tipo de fenômeno se denomina fora do equilíbiro térmico.

A formação das galáxias é um exemplo. A termodinâmica não se aplica porque o campo gravitacional depende do tempo. E o processo é complicado pela contínua aglomeração de massa que o campo gravitacional provoca. A redistribuição de massa no espaço muda de volta o campo gravitacional. O efeito combinado ao longo do tempo forma a rede cósmica, da qual eu já comentei outras vezes no blog. Do ponto de vista da Termodinâmica, a formação das galáxias pode parecer uma incógnita, mas é porque a origem das galáxias vem da dinâmica do campo gravitacional.

Outros dois exemplos importantes são a formação dos núcleos atômicos e a formação da radiação cósmica de fundo. Se nós fossemos usar a Termodinâmica em Cosmologia para descrever esses processos, iríamos obter respostas incorretas. Na formação do hélio, por exemplo, vê-se que a abundância do hélio em equilíbrio termodinâmico se torna relevante quando a temperatura é cerca de 3.5×109 K, e a Termodinâmica prevê que cerca de 31% dos bárions deveria estar em forma de hélio hoje. O valor correto é mais próximo de 25-27%. A Termodinâmica falha porque a formação do hélio precisa competir com o fato de que a densidade de prótons e nêutrons está decaindo no tempo. Os prótons e nêutrons vão se tornando menos densos por causa da expansão do universo. A formação do hélio não dura para sempre porque eventualmente a densidade é tão baixa que não permite mais reações nucleares ocorrerem. Além disso, a formação do hélio depende da presença dos nêutrons, que decaem rapidamente a medida que as reações nucleares perdem força para converter prótons em nêutrons. Se abdicarmos da Termodinâmica e calcularmos o processo dependente do tempo, chegaremos ao valor correto de 27%. A radiação cósmica de fundo se forma por um processo similar de competição em que os elétrons livres que ainda espalham fótons por efeito Compton vão desaparecendo ao serem capturados pelos núcleos para formar os átomos neutros de hidrogênio e hélio.

Quando nós não podemos usar a Termodinâmica para reações físicas mas ainda se quer fazer contas para um número grande de partículas, se usa física estatística fora do equilíbrio onde a dinâmica é comandada pelo que genericamente se chama equações de Boltzmann. O nome de Boltzmann deve indicar como já se sabia faz tempo as limitações da Termodinâmica.

O propósito desse comentário é o seguinte: não é necessária nenhuma mágica para entender como se formam estruturas complexas no universo onde vale a segunda lei da Termodinâmica. Basta aplicar as leis físicas relevantes para o processo microscópico (no caso da formação dos núcleos é a física nuclear, da formação das galáxias é a Relatividade Geral). A Termodinâmica é uma aproximação que nem sempre descreve todas as variáveis físicas, só aquelas que se tornam independentes do tempo.

%d blogueiros gostam disto: