Archive

Posts Tagged ‘astronomia’

Buracos negros por todo o universo

quarta-feira, 15 jun 2011; \24\UTC\UTC\k 24 2 comentários

Imagem composta do Telescópio Hubble (luz visível) e Telescópio Chandra (raios X) de galáxias a cerca de 12 bilhões de anos-luz de distância (redsfhit 6 a 7), quando o universo tinha cerca de 800 milhões de anos. A cor azul representa a imagem em raios X, vermelho no infravermelho, e demais cores no visível. Clique para ampliar.

Notícia marcante no dia de hoje: a NASA anunciou que amanhã a Nature publicará a primeira imagem em raios X do universo quando ele tinha apenas cerca de 800 milhões de anos, e… a primeira visão de buracos negros em escalas cosmológicas! Segundo o anúncio da NASA, a imagem em raios X permite estimar que para mais de 30% de todas as galáxias tem um buraco negro supermassivo no centro — astros até um bilhão de vezes mais pesados que o Sol — senão todas elas.

A imagem é do Telescópio Espacial Chandra de raios X. Este é um feito técnico impressionante, pois esses objetos a essa distância 12 bilhões de anos-luz são quase invisíveis mesmo aos melhores telescópios de raios X. A câmera do telescópio ficou 46 dias ininterruptos capturando a imagem. Buracos negros supermassivos são em princípio visíveis ao telescópio porque muitas vezes eles são acompanhados de estrelas vizinhas que começam a ter seu material sugado em direção ao buraco negro, e os elétrons do gás que compõe a estrela são acelerados com energias tipicamente próximas da região dos raios X altamente energéticos a medida que o gás entra no buraco negro (vide figura abaixo).

Simulações numéricas mostram que as primeiras estrelas do universo eram muito pesadas, viveram poucos milhões de anos e colapsaram para formar buracos negros supermassivos. O resultado de Chandra era portanto esperado.

A imagem é suplementar ao Telescópio Espacial Hubble que já mapeou a mesma região do céu na mesma distância mas na freqüência da luz visível. Os astrônomos já haviam observado que há correlações entre a massa dos buracos negros e a taxa de formação de estrelas na galáxias onde eles habitam no caso de galáxias relativamente próximas (e portanto, de idade similar a da nossa) e também com o formato da distribuição de matéria escura nas galáxia, em muito devido ao trabalho do astrônomo de Dartmouth Ryan Hickox. Porque os buracos negros influenciam a formação de estrelas e aglutinação de massa nas galáxias ainda não se sabe. O estudo que sairá amanhã na Nature é o primeiro a analisar a formação de buracos negros em galáxias tão antigas, mas os detalhes só amanhã.

Para mais sobre a relação da formação de buracos negros e galáxias, considere esse colóquio de Ryan Hickox (60min, em inglês).


Ilustração do que acontece quando uma estrela passa perto de um buraco negro. A medida que o gás cai no buraco, os elétrons do gás da estrela são acelerados e emitem raios X, visíveis ao telescópio Chandra. Crédito da foto: NASA (domínio público).

Atualização 1 16/06: artigo publicado hoje na Nature.

Atualizações do Ultra Deep Field, Planck e LHC

quarta-feira, 9 dez 2009; \50\UTC\UTC\k 50 Deixe um comentário

Planck

Já faz algum tempo que eu gostaria de passar a notícia (atrasada) que o satélite Planck vai bem, obrigado. No presente momento, o cronograma atualizado da missão espera que em 2012 os resultados das medidas precisas de anisotropia da radiação cósmica de fundo se tornem públicas.

Ultra Deep Field

Logo depois que o Hubble sofreu sua atualização este ano, a câmera do Hubble Ultra Deep Field (HUDF) permitiu detectar as primeiras galáxias com redshift z ~ 8 (o recorde era z ~ 7). E ontem a imagem do HUDF foi atualizada.

Hubble Ultra Deep Field 2009

LHC

O LHC realizou a primeira colisão de prótons a energia de 2.36 TeV.

Tomografia do universo revela evidência de energia escura

terça-feira, 3 nov 2009; \45\UTC\UTC\k 45 5 comentários

Resultado da análise de lentes gravitacionais usando o telescópio espacial Hubble revelou evidência independente da expansão acelerada do universo.

O conjunto de evidências favoráveis ao modelo do Big Bang com expansão acelerada acaba de crescer. Um grupo de astrônomos e astrofísicos de países da Europa, Estados Unidos e China — chamada colaboração COSMOS — finalizou uma detalhada análise da distribuição de lentes gravitacionais que indica que o universo é descrito pelo modelo do Big Bang com aceleração. O grupo utilizou dados de uma câmera do telescópio espacial Hubble que fotografa galáxias próximas a Terra dentro de uma área de aproximadamente (1.6°)2. Através de um método de estimativa do desvio para o vermelho da luz das galáxias, COSMOS mediu parte da distribuição de massa do universo em diferentes distâncias para concluir que esta exige um termo de aceleracão para a expansão do universo. Cosmólogos medem a contribuição da aceleração do universo em termos de um parâmetro conhecido como a (densidade da) constante cosmológica, que é zero em universo em expansão desacelerada, e positivo para um universo acelerado, \Omega_\Lambda. O recente resultado, publicado hoje, revela que

\Omega_\Lambda > 0.32.

Esse número significa que pelo menos 32% da densidade de energia do universo está na forma da componente responsável pela expansão acelerada, genericamente chamada de energia escura.

O método usado pelo grupo COSMOS é inédito, e é importante porque revela uma medida da aceleração da expansão do universo que independe da calibração de distância inventada com as medidas de supernovas tipo Ia — esta foi a relação entre intensidade da luz emitida pela supernova em função de sua distância, que permitiu a descoberta da aceleração do universo em 1998.

Lentes gravitacionais fracas

Fig. 1: Imagem do telescópio espacial Hubble do aglomerado de galáxias Abell 2218. O campo gravitacional das galáxias do aglomerado distorce a imagem de galáxias que estejam atrás deste, que tem sua forma esticada em uma elipse, que são os arcos visíveis ao redor do aglomerado.

Toda vez que um raio de luz passa perto de uma massa M, o campo gravitacional de M atrai o raio de luz, causando uma deflexão. Esta deflexão foi vista pela primeira vez por Arthur Eddington e constituiu uma das primeiras evidências a favor da teoria da Relatividade Geral de Einstein. Um conjunto de galáxias funciona como a massa M para galáxias próximas que estejam atrás do aglomerado vistas em relação a Terra, causando um desvio visível em fotografias, como a imagem do aglomerado de Abell 2218. Nesse caso, o fenômeno é conhecido como lente gravitacional forte.

Como todo objeto no universo emite luz que, inexoravelmente, passa perto de diversas massas M até chegar a Terra, é possível dizer que toda imagem vista por nós contém algum nível de distorção gravitacional. O efeito é esquematizado na Fig. 2, e nesse caso é conhecido como lente gravitacional fraca. Nesse caso, a deflexão da luz é causada por várias massas m distantes da linha de propagação da luz, causando um pequeno desvio da posição da fonte de luz. Embora o desvio seja pequeno, e não seja possível determinar a posição original do astro, é possível observar o padrão de distorção causado pelo meio material entre a fonte e nós, Fig. 2. Esse padrão permite inferir a quantidade de massa gravitacional que existe entre as galáxias sendo observadas e nós na Terra.

Fig. 2: Desenho esquemático de lente gravitacional fraca. A distorção na distribuição foi exagerada para melhor visualização. Imagem da Wikipedia. O lado esquerdo ilustra a imagem sem lente gravitacional, o lado direito com.

Tomografia de lentes gravitacionais

A colaboração COSMOS utilizou um católogo de lentes gravitacionais fracas associado a uma medida do desvio para o vermelho das galáxias na amostra. A distorção da imagem causada pelo campo gravitacional é o que dá informação sobre o conteúdo do universo, e a variação com desvio para o vermelho permite saber como este conteúdo evolui com a distância. O método então permite acompanhar no tempo a evolução da distribuição de massa do universo, e ficou conhecido como tomografia de lentes gravitacionais fracas.

Não é possível, naturalmente, definir qual é a posição exata de cada galáxia devido a distorção da posição causada pela desconhecida distribuição do campo gravitacional, no entanto, é possível obter informação sobre a correlação da distribuição de galáxias, isto é, a probabilidade de se encontrada uma galáxia na posição x, outra ser encontra na posição y. A medida da distribuição da fonte do campo gravitacional em função da distância contém a informação de que há um grande componente na fonte do campo gravitacional que é independente da distância: é a constante cosmológica.

Assumindo que o universo é plano, os dados de COSMOS indicam que no momento mais recente do universo (i.e. para desvios para o vermelho da luz da ordem de um), a densidade de matéria é aproximadamente

\Omega_m = 0.27.

Isso significa que aproximadamente 27% da densidade de energia do universo hoje se encontra na forma de massa com baixas velocidades em comparação a da luz. Como o universo hoje é composto predominantemente por massa e talvez energia escura, sabendo que a soma de todas as densidades de energia é igual a 1 (que é verdade apenas para o universo plano), conclui-se que cerca de 73% da densidade de energia está em forma de energia escura. Permitindo que a geometria do universo não seja necessariamente plana, não é possível extrair um único valor para \Omega_\Lambda, no entanto, é possível demonstrar que os dados implicam que a quantidade

q_0 = \Omega_m / 2 - \Omega_\Lambda

é negativa, logo \Omega_\Lambda não pode ser zero, e portanto o universo é acelerado.

O que ainda não se sabe sobre a aceleração do universo

COSMOS demonstrou que lentes gravitacionais fracas podem ser utilizadas para extrair informação cosmológica útil. O próximo passo é entender a evolução temporal das distribuições de massa do universo e da energia escura. A evolução temporal (se alguma) da energia escura é o que pode nos dizer sua origem física: se ela é uma constante cosmológica, ou se é mais outro campo físico da Natureza.

Mais informações

  1. Tim Schrabback et al., arXiv:0911.0053
  2. Matthias Bartelmann, Peter Schneider, astro-ph/9912508.
  3. Wikipedia

Quando buracos negros colidem

domingo, 26 jul 2009; \30\UTC\UTC\k 30 3 comentários

Em 1964, Susan Hahn e Richard Lindquist, então na IBM Nova York, decidiram estudar numericamente a evolução temporal de dois buracos de minhoca (Ann. Phys. 29:2 304 (1964)). Parece uma tarefa fácil: você decompõe as equações da Relatividade Geral em uma forma adequada, coloca no computador e pede a resposta! Mas Hahn e Lindquist encontraram uma pedra no caminho: o programa congelava antes de dar qualquer resposta útil. A simulação era impossível. O que eles descobriram foi um problema que demorou mais de quarenta anos para ser solucionado: como resolver as equações da Relatividade Geral em um computador?

Várias tentativas foram realizadas desde o pioneiro trabalho de Hahn e Lindquist em busca do tratamento numérico adequado para a Relatividade Geral e envolveu físicos teóricos eminentes como Kip Thorne e Saul Teukolsky, mas sem nenhum sucesso. Em 1990, o projeto LIGO, o experimento que tem a maior chance de em breve detectar as ondas gravitacionais, trouxe grande pressão para a resolução desse problema. Estimava-se que as maiores fontes de luminosidade em ondas gravitacionais no universo seriam as fusões de buracos negros, provavelmente os objetos de mais fácil acesso ao experimento. Todavia, o cálculo da irradiação gravitacional desse fenômeno não pode ser feito pelas técnicas analíticas de solução da Relatividade Geral: é necessário obter uma resposta aproximada numericamente. A National Science Foundation nos Estados Unidos iniciou em 1990 então um programa específico de financiamento para um esforço de resolver o problema.

A grande revolução surgiu em um artigo submetido a 4 de julho de 2005 ao arXiv: Frans Pretorius, da Universidade de Alberta do Canadá e do CalTech, Estados Unidos, tornou pública a primeira simulação numérica bem sucedida da fusão de dois buracos negros. O resultado mais importante da simulação é a forma da onda gravitacional em função do tempo (cf. figura).

Onda gravitacional da fusão de buracos negros, como medida em um ponto fixo no espaço em função do tempo.

Onda gravitacional da fusão de buracos negros, como medida em um ponto fixo no espaço em função do tempo.

As simulações numéricas permitiram descobrir que a fusão de buracos negros emite cerca de 4% da massa total do binário em forma de ondas gravitacionais. Para um binário de buracos negros supermassivos — mil a um milhão de vezes mais pesado que o Sol — , como os que existem no centro de quase toda galáxia no universo, a potência irradiada pelo processo de fusão é da ordem de 1023 vezes a luminosidade intrínseca do Sol. Para comparação, todas as estrelas do universo observável iluminando juntas o espaço tem uma potência de 1021 sóis. Uma única fusão de buracos negros emite em ondas gravitacionais mil vezes mais energia que 100 bilhões de galáxias juntas emitem em luz!

Mas quando dois buracos negros vão fundir no universo? Acredita-se que no núcleo de quase toda galáxia há um buraco negro, então quando duas galáxias colidem (se misturam seria uma expressão mais adequada) é possível que os buracos negros de seus centros formem um binário que após algumas voltas entram em rota de colisão. Fusão de galáxias é um processo comum na história, acredita-se que toda galáxia hoje passou por pelo menos uma. A Via Láctea está atualmente em fusão com sua vizinha elíptica, a galáxia anã Sagitário, e em cerca de 3 bilhões de anos colidirá com a galáxia de Andromeda.

O seguinte vídeo é uma simulacão numérica completa da fusão de dois buracos negros, trabalho do grupo de relatividade numérica do Centro Espacial Goddard da NASA. O que você vê em cores é a amplitude do campo gravitacional para um dos modos de polarização da onda emitida (o fundo estrelado é artificial, não é incluído na simulação). Mais do que um filme bonito, essas simulações permitirão abrir uma nova porta para a astronomia e física do universo primordial, como veremos.

Agora, voltando ao problema da programação da Relatividade. Um programa que faz esse tipo de simulação é o openGR, desenvolvido pelo Centro de Relatividade da Universidade do Texas em Austin, que como nome diz é um programa livre. Até o momento, apenas os problemas de fusão de buracos negros foram investigados. Um próximo passo natural é a evolução do campo gravitacional cosmológico. No futuro, as simulações do universo primordial conterão simultaneamente a evolução do campo gravitacional com todas as reações do plasma contido no universo — é literalmente uma simulação detalhada da evolução de tudo que há no universo, a geometria inclusive. De imediato, isso terá importância para a descrição minunciosa da variação espacial da temperatura da radiação cósmica de fundo — anisotropias da CMB, para ser curto — , que fornece informação do conteúdo do universo e da evolução dos bárions, neutrinos, fótons e matéria escura durante os primeiros 500 mil anos do cosmos. Por exemplo, o fato dos neutrinos terem massa pode ser visto nas anisotropias da CMB, portanto é possível que o satélite Planck forneça o primeiro valor experimental da massa dessas partículas elementares, embora para verificar isso não é necessário grande detalhe na evolução temporal da Relatividade Geral — um cálculo analítico que trata as inomogeneidades do universo como pequenas é suficiente. Todavia, há regimes — as transições de fase no universo primordial — em que as anisotropias não podem ser tratadas como pequenas perturbações no campo gravitacional e um cálculo numérico se torna útil, embora não definitivamente a única escolha (há uma outra possibilidade, o uso de métodos aproximados analíticos).

LIGO: confrontando cálculo com experimento

Leia mais…

Pierre Auger enfraquece relação entre UHECR e núcleos ativos de galáxias

terça-feira, 14 jul 2009; \29\UTC\UTC\k 29 Deixe um comentário

Durante a 31a Conferência Internacional de Raios Cósmicos na Polônia (7 – 15 Julho 2009), a colaboração Pierre Auger tornou pública uma maior quantidade de dados de raios cósmicos de altas energias (UHECR) — maior que 107 TeV — e concluiu que a relação entre núcleos ativos de galáxias (AGNs) e a origem destes raios cósmicos está mais fraca do que eles haviam encontrado em novembro de 2007. Acredita-se que AGNs diferem das galáxias comuns por possuírem um buraco negro central que acelera matéria produzindo radiação eletromagnética em quantidade muito superior aquela que poderia ser obtida dentro de estrelas.

Na primeira análise, publicada na revista Science, 18 de 27 eventos encontravam-se a menos de 3° de um AGN. Na nova análise de julho de 2009, 17 eventos de 44 foram encontrados na direção de AGNs. Os dados são parcos e a colaboração conclui que mais informação é necessária para creditar AGNs como fontes dos raios cósmicos de ultra energia. Uma análise estatística no momento indica todavia que a probabilidade de tal correlação ser medida para uma distribuição isotrópica de fontes é de apenas 1%. Esse resultado aparentemente favorável pode ser contudo artificial devido ao pequeno número de dados.

MOND talvez requer matéria escura

segunda-feira, 13 jul 2009; \29\UTC\UTC\k 29 1 comentário

Um dos últimos refúgios para uma alternativa a existência de matéria escura no universo é o modelo conhecido por MOND. Benkenstein formulou uma versão relativística, conhecida pela sigla TeVeS. Em dois artigos recentes, Mairi Sakellariadou et al. (arXiv:0901.3932 e arXiv:0907.1463) do King’s College de Londres encontram evidência de que o modelo TeVeS não suporta simultaneamente as lentes gravitacionais e as curvas de rotação de galáxia sem exigir um componente de matéria escura. Para isso, eles analisaram as lentes gravitacionais e as curvas de rotação de seis galáxias. Para explicar lentes gravitacionais, a teoria exige um conjunto de constantes diferente do que ela exige para as curvas de rotação. Até o melhor ajuste das lentes deduz automaticamente uma quantidade de massa superior a massa luminosa das galáxias. Ou seja, ainda se ignorarmos as curvas de rotação, as lentes gravitacionais impõe a existência de matéria escura no modelo TeVeS — inclusive aproximadamente na mesma quantidade da Relatividade Geral.

Obter a massa luminosa das galáxias é relativamente fácil. Uma estimativa é contar o número de estrelas e multiplicar pela massa do Sol. No trabalho em questão, os autores utilizaram um resultado de um grupo de astrônomos que é preciso e sofisticado: a massa total luminosa é extraída de uma simulação da estrutura galática combinada com as propriedades conhecidas dos tipos de estrelas luminosas pertencentes a estas regiões, usando medidas astronômicas de luminosidade por freqüência como entrada.

Mais: pequena explicação em português sobre lentes gravitacionais e colóquio no IF-USP de Martín Makler (CBPF).

Ciência do telescópio Hubble

sábado, 16 maio 2009; \20\UTC\UTC\k 20 1 comentário

As vezes injustiçado, o telescópio espacial Hubble (HST) é uma das mais importantes missões científicas da história da NASA. O novo reparo do telescópio passa desapercebido do nosso blog, mas você pode acompanhar atualizações de perto pelos posts da Julianne no CV. Veio do HST as fotos das mais antigas galáxias e das supernovas mais distantes observadas que compõe parte dos dados da curva do parâmetro de Hubble que permitiu descobrir que a expansão do universo é acelerada em 1998. HST foi extensivamente utilizado para extrair informação sobre a composição química de estrelas de diversos tipos através da espetroscopia da luz emitida por essas estrelas — projeto que estava desativado devido aos equipamentos necessários terem falhado no telescópio nos últimos anos. A notícia de hoje da missão de reparo do Hubble é a instalação de um novo espectrografo no telescópio (veja aqui o website desse espectrografo e porquê ele é importante para o conhecimento do cosmos). Foi também do HST que surgiram as primeiras fotografias da estrutura da rede cósmica, a distribuição de matéria do universo atual prevista pelo modelo cosmológico padrão com matéria escura, e várias importantes fotografias de lentes gravitacionais de galáxias, o que soma as evidências da existência da matéria escura.

Se tudo der certo nesta última missão de reparo ao HST, ele deve provir a astronomia, astrofísica, e a cosmologia, de muito mais ciência básica para os próximos 20 ou 30 anos. E sabe-se lá o que ainda vai ser descoberto… 🙂

%d blogueiros gostam disto: