Archive

Posts Tagged ‘física de partículas’

Fermi-LAT pode ter confirmado resultado do PAMELA

sexta-feira, 20 maio 2011; \20\UTC\UTC\k 20 1 comentário

Hoje a Physics World reportou que a colaboração Fermi-LAT fez uma divulgação preliminar durante um congresso de que eles podem ter confirmado o excesso de pósitrons nos raios cósmicos que atingem a Terra na região de 10 a 100 GeV observados pelo PAMELA. Esse resultado é do mais confuso, porque o Fermi-LAT não observa tal excesso para os elétrons.

 Espectro de pósitrons cósmicos do satélite PAMELA.

Espectro de pósitrons cósmicos obtido pelo satélite PAMELA. A linha sólida é o cálculo Moska & Strong. Não incluido o fluxo previsto por fontes pontuais temporárias.

Muitas pessoas irão falar que esse excesso pode ser explicado com processos astrofísicos comuns, mas isso tem que ser visto com muito ceticismo porque genericamente qualquer processo de aceleração clássico deveria gerar um espectro de potência que diminui com o aumento da energia dos pósitrons, como 1/En para n > 0. Porém, o PAMELA, e agora o Fermi-LAT, observam um crescimento do número de pósitrons de 10 a 100 GeV, o que contradiz intuitivamente a possibilidade do excesso vir de aceleramento astrofísico. Além disso, por que o processo astrofísico iria acelerar pósitrons nesta energia mas não os elétrons?

CMS e ATLAS esperam descobrir o Higgs até 2012

quinta-feira, 31 mar 2011; \13\UTC\UTC\k 13 5 comentários

Detector CMS em fase de montagem em 2008. Foto: Michael Hoch.

Hoje a Physics World publicou uma entrevista com Guido Tonelli, porta-voz do experimento CMS, e Pippa Wells, porta-voz do ATLAS. Ambos afirmam que CMS e ATLAS darão uma resposta definitiva para a existência do bóson de Higgs até final de 2012. A expectativa é que os dados do LHC de 2011 e de 2012 serão necessários para poder vasculhar o Higgs em toda a janela de massa que ele pode existir, que é atualmente de 115 a 600 GeV (para uma comparação, a massa do próton é aproximadamente 1 GeV). O Higgs é a única partícula do Modelo Padrão que ainda não foi positivamente detectada.

Leia mais…

Estranha natureza da matéria escura

domingo, 25 abr 2010; \16\UTC\UTC\k 16 2 comentários


Fotografia em raios X da galáxia NGC 720 do telescópio Chandra da NASA (lado esquerdo) revelaram a estrutura de matéria escura da galáxia (foto óptica ao lado direito), que agora desfavorece a existência de interações da matéria escura causadas por um bóson escuro leve.
Quem acompanha o blog viu que no final de 2008, o satélite europeu Pamela apresentou qual o número de prótons e pósitrons que bombardeiam a Terra vindo da galáxia e descobriu que para energias acima de aproximadamente 10 GeV, o número de pósitrons começa a aumentar, enquanto o número de prótons continua a diminuir[1].
Como um pósitron consegue chegar a 10 GeV de energia, que corresponde a uma temperatura de 1014 K, quando a temperatura no núcleo do Sol é de apenas 107 K? De onde veio essa energia do próton?
Em 1949, Enrico Fermi mostrou que esse tipo de energia para raios cósmicos é natural[2]. Existem prótons e elétrons espalhados pela galáxia, que vieram de processos astrofísicos, largados aqui e ali por estrelas e supernovas. Eventualmente eles encontram o campo magnético que existe na galáxia e ficam presos, mas esse campo possui inomogeneidades, gradientes, e a partícula quando encontra um pico de intensidade do campo magnético recebe uma força maior que a média que a mantém presa no campo e acaba sendo liberada com uma energia maior. Quanto mais energética é a partícula, mais difícil é desviá-la do seu caminho, então podemos em primeira aproximação imaginar que os acréscimos são inversamente proporcionais a energia que a partícula já possuia antes de receber o pontapé do campo magnético. Então a probabilidade de observar uma partícula com energia E na Terra deve ser inversamente proporcional a sua energia,

 
P(E) \propto 1/E^\gamma

onde \gamma > 0 é um fator a ser determinado experimentalmente. Esse mecanismo de Fermi não poderia explicar o súbito crescimento do número de partículas com energias acima de 10 GeV observados no Pamela e no ATIC, e por isso o crescimento foi interpretado como um sinal de nova física.
Mas se esse excesso fosse devido a aniquilação de matéria escura na galáxia produzindo pósitrons, então a probabilidade de aniquilação de matéria escura teria que ser muito maior que o valor esperado no cenário de WIMPs. Por isso, Neil Weiner e colaboradores sugeriram que deveria existir uma nova partícula leve que só interage com a matéria escura, porque tal interação introduziria um fator de aumento na probabilidade de aniquilação da matéria escura que depende da velocidade do gás de matéria escura:

 
S = \displaystyle{\frac{\pi \alpha_X / v_\text{rel}}{1 - \exp(-\pi \alpha_X/v_\text{rel})}}

Infelizmente, este mês relata Jonathan Feng e colaboradores na Phys. Rev. Lett. que essa interação já está excluída devido ao formato das galáxias[3]. Motivados por estudos numéricos do formato dos halos de matéria escura quando se inclui interações[4], eles argumentam que a introdução de interação favorece a formação de halos mais esféricos do que aqueles que seriam formados desprezando interações, e então usam os dados sobre a elipsidade do halo da galáxia NGC 720 que foi estudado com as imagens de raios X do telescópio Chandra[5] e comparam com as simulações numéricas em função da intensidade da interação da matéria escura para restringir a seção de choque. O principal resultado deles é o gráfico da Fig. 1, que mostra que o valor do aumento da seção de choque S compatível com os dados do satélite Pamela não é compatível com o valor limite de S permitido pelo formato do halo de matéria escura de NGC 720.

Fig. 1, gráfico de S versus massa da partícula de matéria escura, da ref. 2. A região verde indica a parte favorecida pelos dados do Fermi, a vermelha pelos dados do Pamela. A linha tracejada indica o limite em S extraído da forma da galáxia NGC 720, e a linha azul da abundância de matéria escura. A discrepância se dá no fato que para produzir as regiões verde e vermelho, é necessário que a partícula intermediadora da aniquilação de matéria escura tenha massa 250 MeV, que já está excluído nesta região que requer uma massa de, no máximo, 30 MeV.

Esse resultado é consistente com a interpretação de que não há nenhum excesso no espectro de raios cósmicos, como os novos dados do satélite Fermi sugerem.

Referências

  1. Velhas e novas evidências da matéria escura
  2. E. Fermi, Phys. Rev. 75, 1169–1174 (1949).
  3. J. L. Feng, M. Kaplinghat, H.-B. Yu, Phys. Rev. Lett. 104, 151301 (2010).
  4. Romeel Davé et al. ApJ 547 574 (2001).
  5. David A. Buote et al ApJ 577 183 (2002).

Fermi-LAT põe nova restrição a decaimento de matéria escura

quarta-feira, 13 jan 2010; \02\UTC\UTC\k 02 1 comentário

Anteriormente no blog, eu falei sobre a excitação da possível descoberta de interação da matéria escura com elétrons. A idéia é que existe um modelo para o cálculo do espectro dos raios cósmicos na nossa galáxia que se ajusta bem aos dados para certos limites, mas está no momento sistematicamente abaixo do valor experimental para energias altas (maior que 100 GeV). Entre tais evidências do excesso experimental, figura uma medida precisa do número de elétrons cósmicos acima de 10 GeV pelo balão atmosférico ATIC em outubro de 2008 e radiação gama medida pelo satélite EGRET da NASA e antecessor do Fermi-LAT, e pelo satélite INTEGRAL da Agência Espacial Européia (ESA). Não muito tempo depois da descoberta do ATIC, o satélite Fermi da NASA publicou resultados sobre os elétrons cósmicos contradizendo o excesso alegado pelo ATIC.

Em 16 de dezembro do ano passado, em uma notícia que passou-me desapercebida, Fermi tornou pública novas medidas dos raios gama que contradizem o excesso observado pelo EGRET e que estão de acordo com o modelo de difusão de raios cósmicos. Se as medidas do Fermi-LAT estiverem corretas, o excesso (se é que há algum) de raios gama é muito menor do que o sugerido pelo experimento EGRET, desmotivando a introdução de novas interações da matéria escura com os léptons. Todavia, se isso for o caso, tampouco deve-se interpretar o resultado do satélite PAMELA (que mediu pósitrons sistematicamente acima do modelo de difusão) como indicativo de interação da matéria escura. Se o resultado do Fermi-LAT for vindicado, então ainda não foi desta vez que foi possível vasculhar parte da natureza do setor escuro do universo. Porém, eu quero deixar uma ressalva com respeito a publicação do Fermi-LAT: embora a colaboração conclui que há consistência da medida com o modelo, pode-se ver do gráfico (que eu reproduzo aqui abaixo), que as medidas são sistematicamente acima da previsão teórica. Isso pode não ser útil para identificar essas interações como sinal claro de matéria escura, mas é para entender mais detalhes da produção e propagação de raios cósmicos.


Resultado do espectro de raios gama da nossa galáxia medido pelo Fermi-LAT. Os pontos vermelhos no topo do gráfico são os dados, incertezas indicadas pela faixa vermelha. A região tracejada de preto é a previsão final do modelo teórico.

Fofoca do CDMS…

quinta-feira, 3 dez 2009; \49\UTC\UTC\k 49 11 comentários

Fofoca de Física é punk… 😎

Mas, anda correndo na boca miúda… que o CDMS está prestes a fazer um “anúncio público” no dia 18 de Dezembro (exatos 15 dias de hoje)! Inclusive, continua a fufuca, com direito a artigo publicado na Nature e tudo mais. 😈

Não dá pra contar a fonte, claro (senão, não seria fufuca 😉 ), … mas, dá pra dizer que a notícia veio desde o “alto escalão“, do “alto clero“, direto pros mortais…

😈

Fiquem ligados!

Encontrado um análogo da QCD?

segunda-feira, 30 nov 2009; \49\UTC\UTC\k 49 1 comentário

Quando cheguei a Dartmouth, o meu primeiro projeto de pesquisa envolveu uma aplicação cosmológica do modelo do Schwinger, que é a versão em 1 dimensão espacial da eletrodinâmica quântica (QED 1+1 daqui para frente). Uma das coisas belas de teorias quânticas de partículas em 1 dimensão espacial é que as integrais de trajetória tem formas fechadas, permitindo calcular todos os observáveis em forma exata. Curiosamente, a QED 1+1 tem integrais de trajetórias idênticas a teoria de um méson escalar com um potencial tipo co-seno. Mais ainda, quando o valor do acoplamento do férmion com o fóton é não-perturbativo (i.e. a interação é forte), o acoplamento do méson é perturbativo (i.e. a interação entre mésons é fraca), e vice-versa, ou seja, se e_\mu é o valor da carga elétrica medida na escala de energia \mu e \lambda_\mu é o valor do acoplamento do campo escalar medido na mesma escala de energia, esses dois se relacionam na forma e_\mu \propto 1/\lambda_\mu. Notando esse fato, Sidney Coleman observou que tinha-se na verdade uma teoria em 1 dimensão que se comporta analogamente a QCD (a teoria das forças nucleares fortes), e não a QED, pois para energias altas em que o acoplamento e_\mu é fraco, a teoria pode ser vista como a teoria de um férmion acoplado com um bóson de gauge, mas a energias baixas, e_\mu se torna grande, a interação férmion-férmion intermediada pelo bóson de gauge confina essa partícula a existir apenas na forma de bósons de spin 0 (o campo escalar). Isso é idêntico ao que acontece na QCD em que o par de quarks up e down confina quando cada quark tem energia E < 240 MeV para formar o os três píons, \pi^0\, , \pi^+ \, ,\pi^- — a física desses últimos é descrita por campos escalares ao invés de férmions de spin 1/2 e glúons.

Relacionado a essa questão, eu fiquei curioso em saber se existia um sistema da matéria condensada que fosse descrito pelo modelo de Schwinger, algum sistema eletromagnético efetivamente de 1 dimensão espacial. Bom, parece que estes senhores encontraram um tal sistema em 1996: Phys. Rev. B 53, 8521 – 8532 (1996), que foi experimentalmente realizado recentemente, com um relatório publicado na Nature Physics ontem.

Leia mais…

LHC: 2.36 TeV

segunda-feira, 30 nov 2009; \49\UTC\UTC\k 49 Deixe um comentário

Monitor na sala de controle do feixe do LHC mostra 1.17 TeV por feixe de prótons. Hoje o acelerador alcançou a marca de 1.18 TeV por feixe.

Aconteceu hoje: o LHC superou a marca de 1.96 TeV do Fermilab operando a uma energia combinada de 2.36 TeV dos dois feixes de prótons no anel principal! Eba! 🙂 Nos primeiros quatro meses de 2010, a equipe do feixe do LHC pretende acelerar os prótons a uma energia combinada de 7 TeV (energia do centro de massa). O objetivo é chegar a 14 TeV no centro de massa, ou seja 7 TeV em cada próton (no referencial do laboratório). Cada quark e glúon do próton terá uma energia de aproximadamente 1 TeV, fazendo o LHC um acelerador de partículas que colide quarks e glúons juntos a energias de aproximadamente 2 TeV. Essa energia é convertida no produto de decaimento das colisões quarks e glúons, e permite janela suficiente para produzir o bóson de Higgs, que deve ter da ordem de 100 GeV/c2 de massa — uma partícula elementar de massa próxima aos núcleos naturais mais pesados, como o rádio.

Notícia completa: CERN.

Crédito das fotos: CERN.

Comissão de feixe do LHC comemora o controle do feixe estável a alta energia.
%d blogueiros gostam disto: