Arquivo

Posts Tagged ‘pesquisa’

A física da pesquisa e a física da sala de aula

quarta-feira, 29 set 2010; \39\America/New_York\America/New_York\k 39 2 comentários

Disclaimer: esse post é uma opinião muito pessoal de seu autor, e pode ser que os outros membros do blog não concordem.

Como eu já disse por aqui, eu fico bastante entusiasmado com a idéia de cursos abertos online e disponibilização de material em vídeo, como na iniciativa OpenCourseWare, por exemplo. E eu sou um usuário adicto desses materiais. Já devo ter ouvido as aulas de mais de uma dezena desses cursos, por diversão mesmo, em áreas muito diversas (história, estudos religiosos, biologia, antropologia…). Mas não comecei esse texto para falar desses cursos, mas para falar de algo que esses cursos me fizeram notar a respeito de uma diferença fundamental entre o ensino de física e o ensino em outras áreas do conhecimento, de forma particular, mas não restrita, nas ciências médicas e biológicas.

Para exemplificar o que quero dizer, vou me referir à terceira aula do curso de biologia geral dado na primavera de 2010, na Universidade da Califórnia em Berkeley, cujas aulas em vídeo e éudio estão disponíveis para download no site de webcasts da universidade (http://webcast.berkeley.edu). Em certo ponto dessa aula, a professora diz “e realmente nos últimos 5 ou 6 anos muita pesquisa foi feita para entender a estrutura interna e função do ribossomo, e eu vou mostrar para vocês uma imagem…” e passa a discorrer sobre assunto de pesquisa muito recente, sobre o qual ainda há dúvidas e questões em discussão. Cenas como essa são comuns em todos os cursos que ouvi. Assuntos de pesquisa são citados na sala de aula rotineiramente e discutidos nos trabalhos e dissertações que os alunos tem de entregar para ser avaliados. Isso me chocou. Me chocou como algo completamente alheio com a minha experiência de sala de aula, que acredito ser não muito diferente da experiência de todos os físicos formados no Brasil, e provavelmente no mundo todo. É inconcebível na nossa experiência que um professor de Física I (ou de Physics 101) entre na sala de aula e dê como exercício de casa a uma turma mista de dezenas e dezenas ingressantes de diversos cursos – engenharia, física, química, … – a leitura de um artigo de pesquisa publicado a menos de 10 anos. Nenhum assunto discutido em uma aula de física, mesmo nos últimos anos da faculdade, é mais recente do que a década de 40. Em compensação, poucos assuntos discutidos em uma aula de biologia celular são mais antigos que a década de 70, e muitos tem menos de 10 ou 15 anos de idade! E por que é assim?

Tudo bem, há uma série de explicações muito plausíveis para isso. Talvez a mais forte seja que os conceitos físicos e as ferramentas matemáticas usadas na pesquisa são muito mais avançados do que os que estão sendo estudados na graduação, e que é necessário um período longo de treinamento para sair da primeira aula sobre as leis de movimento de Newton e chegar na mecânica quântica, passando por todos aqueles passos intermediários. A maturação de um físico é um processo longo e lento, nessa visão. Vai da primeira aula de Física I até mais ou menos o meio do doutorado. A física é uma ciência mais antiga e madura, dizem os que defendem essa idéia, e um estudante de física tem que estudar toooodas essas coisas com detalhes, desde o nascimento da mecânica newtoniana até a mecânica quântica e suas aplicações mais elementares. Além disso, um ingressante em física ainda não foi exposto nem ao ferramental matemático básico para prosseguir aprendendo física – o cálculo, a algebra linear e etc…

Apesar de acreditar que há alguma verdade nisso, sinceramente acho que ela é exagerada e super-simplificada pela típica autosuficiência e arrogância dos físicos (eu me incluo nessa conta) e pela inércia do sistema educacional. Faz anos que é assim, foi assim que fizemos no passado, é assim que faremos no futuro porque é assim que se ensina física. E bem, veja só, é mais difícil aprender física, não é?

Não. Não é. Sinceramente, não é. Aprender biologia pra valer é tão difícil quanto aprender física. Ou mais! Pode ter um pouco menos de matemática, mas nas duas ou três primeiras aulas do curso introdutório para a graduação da UC Berkeley que assisti já há uma série de mecanismos celulares complicados, relações entre as organelas, estruturas moleculares complicadas, como as isomerias e as simetrias afetam a função das moléculas, e se o carbono alfa está assim, então a isomeria faz com que o poro da membrana nuclear fique assado… 😯 😯 😯

Não é fácil, definitivamente. E não é “coleção de selos”, é uma sequencia lógica de mecanismos e estruturas bem entendida até certo ponto. Eu não estou acompanhando direito.

Porque um ingressante de biologia está pronto para discutir a biologia molecular dos poros da membrana nuclear de maneira tão detalhada e um estudante de física não está pronto para discutir fenômenos críticos e transições de fase, ou entender, pelo menos num nível qualitativo, o que é decoerência, o que são teorias de campo conforme e porque a correspondência AdS/CFT é tão importante, quais são as alternativas para explicar energia escura, porque o grafeno é um material tão especial, porque é tão difícil ter materiais semicondutores que sejam ferromagnéticos, o que a física por trás de folding de proteínas tem a ver com a física de cristais magnéticos, quais são os melhores candidatos para física além do modelo padrão, como podemos detectar radiação Hawking?

E se tocamos nesse assunto, porque não ir mais fundo? Se os estudantes de física não chegam à metade do século passado, os estudantes do colegial param muito antes disso. A física que fingimos ensinar nas escolas tem pelo menos 150 anos de idade, e é absolutamente inútil para essas pessoas da forma como é ensinada, em todos os aspectos. Não estimulam curiosidade científica, não as ajudam a entender o ambiente tecnológico em que vivem, não fornecem ferramentas de trabalho úteis e nem as preparam para a universidade.

O ensino de Física está, em minha opinião, caduco em todos os níveis e precisando de urgente reforma. E quanto mais a pesquisa avança, mais urgente essa mudança se torna. Se queremos pessoas prontas para integrar os quadros de pesquisa, se queremos estudantes motivados e se queremos desenvolver o quanto antes o gosto pela pesquisa, precisamos forçar a fazer o que os biólogos fizeram de forma natural, e trazer a física da pesquisa de volta para as salas de aula.

Demonstrado novo parâmetro cosmológico

quinta-feira, 11 mar 2010; \10\America/New_York\America/New_York\k 10 1 comentário

Em 2007, Pengjie Zhang e outros cosmólogos teóricos sugeriram que a observação da posição e velocidade das galáxias com o desvio da propagação da luz dessas galáxias até nós serviria de uma medida da distribuição de massa do universo. (arXiv:0704.1932). Até então, a técnica utilizada pelo projeto astronômico do telescópio Sloan Digital Sky Survey (SDSS) consistia em medir a distribuição de galáxias e o desvio para o vermelho da galáxia e extrapolar o resultado para a distribuição de massa assumindo que a matéria escura deve seguir aproximadamente a mesma distribuição espacial que os prótons e nêutrons (bárions). Isso não é exatamente verdade porque os bárions formam um gás que interage muito mais facilmente com os fótons da radiação cósmica de fundo do que a matéria escura, e como resultado, os bárions são mantidos a uma temperatura próxima da radiação de fundo antes da formação das estrelas. Esse gás quente de bárions tem pressão presumivelmente maior que a pressão da matéria escura. Em Relatividade Geral, nós podemos deduzir a relação entre a fração da massa de bárions que acompanha a matéria escura e pode-se dizer que o contraste de densidade de bárions é de 10% a 17% menor que o de matéria escura quando se inclui a pressão do gás. Mais importante é talvez o fato de que devido a pressão dos bárions, existem concentrações densas de matéria escura no universo onde não existem galáxias. Todas essas concentrações de matéria escura pura são perdidas na estimativa original do SDSS.

A idéia de Zhang foi de utilizar as velocidades das galáxias e suas posições e relacionar com a lente gravitacional observada. Combinando astutamente estes dois observáveis diferentes de galáxias, é possível eliminar o efeito da pressão dos bárions pelo menos para certas partes da distribuição espacial da matéria total do universo. O observável é sensível a taxa de crescimento de estruturas (quão rápido/forte é a formação das galáxias) que depende sensivelmente com a teoria da gravitação subjacenete, e dessa forma medindo-a é possível testar diferentes teorias da gravitação. No artigo de Zhang, eles mostraram que com a sensibilidade projetada do telescópio SKA, seria possível distinguir a Relatividade Geral de MOND, f(R) e uma teoria de dimensões espaciais extras (conhecida pela sigla de seus autores, DGP) — isso tudo são outros candidatos para teoria da gravitação.

Agora, uma estudante de pós-graduação de Princeton, Reinabelle Reyes, junto com vários outros astrofísicos e astrônomos, demonstrou que a técnica é eficiente (Nature 464, 256-258 (2010)) usando os dados do SDSS. Na realidade, este resultado não é um teste preciso da Relatividade Geral — embora é um teste independente –, e tampouco produziu algo de novo em termos de excluir teorias pois já era sabido de lentes gravitacionais que MOND sem matéria escura não é consistente com os dados (e.g., este post). As barras de erro ainda são muito grandes para poder discernir entre a Relatividade Geral e as alternativas, contudo o que vem como importante é a demonstração de que é possível medir o parâmetro diretamente com erros sob controle. O programa agora será diminuir as incertezas nos telescópios futuros, e quem sabe, projetar um telescópio otimizado para essa medida, que não é o caso do SDSS, de modo a permitir a exclusão ou confirmação mais definitiva de alternativas a Relatividade de Einstein.

%d blogueiros gostam disto: