Arquivo

Posts Tagged ‘quebra de simetria’

Veltman, o “Higgs” e o LHC…

quinta-feira, 6 nov 2008; \45\America/New_York\America/New_York\k 45 25 comentários

Na edição de outubro da CERN Courier, o Veltman tem um artigo muito bom explicando alguns detalhes sobre o mecanismo de “GHK—HBE”:

O ponto central da argumentação do Veltman gira em torno da massa do fóton, mais precisamente, do fato da nulidade da massa do fóton não ser nenhuma exigência do Modelo Padrão — ou seja, não há absolutamente nada no Modelo Padrão que force a massa do fóton a ser nula.

Esse é um resultado importantíssimo e muito pouco apreciado — aliás, esse é o objetivo desse artigo do Veltman, de clarificar o quão profundo esse resultado de fato é, com todas as suas implicações não-triviais.

A primeira vez que esse resultado apareceu, foi na tese de doutorado de G. Guralnik. Na verdade, como conta o próprio Guralnik numa palestra que está praticamente pronta para ser publicada em formato de artigo (ver link abaixo), havia um erro na tese de doutorado dele, que foi apontado por Sidney Coleman, e depois devidamente corrigido:

Foi a luz dessa correção que nasceu o chamado “Mecanismo de GHK—HBE”. No começo, esse mecanismo de quebra de simetria era simplesmente conhecido por “GHK”. Mas, com o passar do tempo, B. Lee, que não era muito amigo de C. Hagen, conseguiu mudar o nome desse mecanismo para “Modelo de Higgs”… o que transformou o “bóson GHK” em “bóson de Higgs”.

Como vcs vêm, há “dramas e fortes emoções” mesmo na Física, uma Ciência tida como “árida”, “dura” e “fria”! Tenho um amigo da Ciência Política que diz que “quando o mundo souber de todo ‘dramalhão’ que há nos deptos de Física, vcs físicos vão ser os novos símbolos de drama queen”! 😉

Diversão garantida! 😈

Quebra Espontânea de Simetria em Mecânica Clássica

terça-feira, 21 out 2008; \43\America/New_York\America/New_York\k 43 18 comentários

Como o tema do prêmio Nobel desse ano foi “Quebra de Simetria”, e um dos laureados foi o Yoichiro Nambu, por: “for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics” nós vamos falar um pouco sobre isso usando um exemplo de Mecânica Clássica. O Leonardo já falou um pouco sobre isso no post Prêmio Nobel de Física de 2008, e o caso de Quebra Espontânea de Simetria (QES) em Mecânica Clássica acabou sendo um pouco comentado na parte de comentários desse post.

Antes de começar é bom lembrar que quebra espontânea de simetria e todos os outros vácuos da teoria de Yang-Mills-Higgs são propriedades quânticas. O que queremos aqui é fazer uma analogia para explicar alguns conceitos que aparecem na literatura de física moderna. Como toda analogia, ela terá seus limites de aplicabilidade e isso deve estar sempre na mente do leitor, mas esperamos conseguir expor os conceitos num nível básico. Quase tudo será acessível a um (bom) aluno de ensino médio. No final, faremos alguns comentários mais avançados.

Modelos Mecânicos com Quebra Espontânea de Simetria

Vamos analisar dois modelos mecânicos em que há quebra espontânea de simetria: O primeiro é o de uma conta num aro que está girando com velocidade angular \omega; o segundo é de uma conta numa haste rígida que está ligada a uma mola.

Conta num aro circular

Modelo prototipico da analogia do vácuo das teorias quânticas.

Modelo prototípico da analogia do vácuo das teorias quânticas.

No referencial em que o aro está em repouso, haverá duas forças agindo sobre a partícula: a força da gravidade (não representada acima, mas tomada como uniforme) e a força centrífuga característica de referenciais não inerciais. Podemos estão escrever a energia potencial efetiva sob a qual a partícula estará sujeita como:

V_{\mathrm{efetivo}}=\frac{1}{2}mR^2\sin^2\theta\omega^2+mgR(1-\cos\theta)

onde m é a massa da conta e g é a aceleração da gravidade. O primeiro termo é o potencial da força centrífuga e o segundo o potencial da força da gravidade. A forma desse potencial efetivo varia dependendo da velocidade angular \omega. O nosso leitor, bom aluno de ensino médio, pode facilmente verificar que para \omega^2 < \frac{g}{R} o potencial tem a seguinte forma:

A escala vertical é arbitrária, mas a horizontal mede \theta. Chamamos de vácuo, em teoria quântica de campos, um ponto de mínimo do potencial. Veja no gráfico acima que temos um vácuo em \theta=0. Perceba ainda que se a conta estiver parada sobre ele há uma simetria no problema: ir para a esquerda ou para a direita é equivalente.

Agora vamos considerar a forma do potencial se \omega^2 > \frac{g}{R}:

Veja que surgiram dois pontos novos de vácuo! E mais do que isso, o vácuo que antes era estável se tornou instável, ie, ele deixou de ser um vácuo verdadeiro. Note que agora, quando a partícula está num desses vácuos estáveis, não há mais a simetria esquerda-direita: se ela for para um lado ela vai descer, se ela for para o outro ela vai subir. Dizemos então que houve uma quebra de simetria.

Conta oscilante numa haste

Considere um conta numa haste rígida e ligada a uma mola de constante elástica k como na figura abaixo:

Sistema mecânico de uma conta numa haste fixa.

Sistema mecânico de uma conta numa haste fixa.

A mola tem um comprimento natural l, então a energia potencial da mola é:

V(x) = \frac{1}{2}k \left( \sqrt{a^2 + x^2} -l\right)^2.

Para minimizarmos a energia potencial, encontrando os pontos de equilíbrio (estáveis e instáveis), precisamos considerar dois casos: a<l e a>l.

Caso a>l

Para o caso a>l temos um único ponto que minimiza a energia potencial, o ponto x_0 = 0, e analisando a derivada segunda da energia potencial em relação a x no ponto x_o vemos que:
\frac{d^2 V(x)}{dx^2}\Big|_{x=x_0} > 0, i.e., x=x_o é um ponto de equilíbrio estável para a>l. O gráfico de V(x) para este caso é:

Gráfico de V(x) para a>l.

Gráfico de V(x) para a>l.

É interessante notar que a energia potencial mínima neste caso é: E_0 = \min \left( V(x) \right) = \frac{1}{2}k(a-l)^2.

Caso a<l

Para o caso a<l temos três pontos que extremizam a energia potencial V(x): x_0 = 0 e x_{\pm} = \pm \sqrt{l^2 - a^2}. Da mesma forma que fizemos no caso a>l, vamos analisar a estabilidade destes pontos de equilíbrios. Calculando a derivada segunda de V(x) obtemos:
\frac{d^2 V(x)}{dx^2}\Big|_{x=x_o} < 0 e \frac{d^2V(x)}{dx^2}\Big|_{x = x_{\pm}} > 0, i.e., o ponto de equilíbrio x_0 é instável e os pontos x_{\pm} são de equilíbrio estável. O gráfico de V(x) para este caso é:

Gráfico de V(x) para a<l.

Gráfico de V(x) para a<l.

A energia potencial mínima para este caso é: E_0 = \min \left( V(x) \right) = 0.

O estado de menor energia no caso a>l possui a simetria por reflexão x \to -x, enquanto que para o caso a<l essa transformação não deixa o sistema invariante, não é uma transformação de simetria. Há uma quebra de simetria da mesma forma que no modelo mecânica anterior da conta num aro circular.

Analisando a energia potencial mínima em função do parâmetro a, E_0 (a), vemos que há uma descontinuidade na segunda derivada \frac{d^2 E_{0}(a)}{da^2} em a=l. Isso é facilmente visto no gráfico abaixo:

Gráfico da energia potencial minima em função de a.

Gráfico da energia potencial mínima em função de a.

Esta descontinuidade na segunda derivada é análoga as encontradas nas transições de fase em segunda ordem da termodinâmica.

Analogia com a Quebra de Simetria da Teoria Quântica de Campos

Essa é a analogia do que acontece no tão falado modelo de Higgs. A presença desse campo introduz uma interação que pode ser entendida como um potencial clássico da seguinte forma:

Perceba a semelhança. Esse potencial, carinhosamente chamado de chapéu mexicano, tem mais graus de liberdade: enquanto movimentos radiais aumentam a energia, movimentos ao redor do chapéu tem mesma energia do vácuo. Isso, na linguagem de teoria quântica de campos, quer dizer que a quebra da simetria é parcial, ainda há uma direção onde há excitações do campo sem massa. Essa excitação sem massa é o fóton e ele é o responsável pela interação eletromagnética. As partículas massivas, que são as excitações correspondentes ao movimento radial no chapéu, são os bósons vetoriais da força nuclear fraca, responsáveis pelos decaimentos radioativos.

Mas voltemos ao nosso primeiro modelo mecânica da conta no aro. Na verdade, o vácuo não é o mínimo do potencial clássico, mas sim do potencial quântico. Vamos introduzir alguns fenômenos quânticos e ver o que acontece. Imagine que a conta está sentada num vácuo, seja ele de simetria quebrada ou não. Ela certamente não tem energia para dar uma volta inteira do aro. No entanto, quanticamente, há um efeito chamado tunelamento em que partículas tem uma certa probablidade de atravessar uma barreira de potencial mesmo que classicamente ela não tenha energia para isso. Então, nesse caso, a partícula sentada no vácuo pode, de repente, dar uma volta inteira no aro! Estranhezas do mundo quântico.

Temos então que imaginar que há uma infinitude de vácuos, um para cada número de voltas que a partícula dá no aro. Algo do tipo:

Em teoria quânticas de campos, o responsável por esse tunelamento são os ínstantons e o vácuo real da teoria é uma superposição de todos esses vácuos. Isso é conhecido em mecânica quântica básica como teorema de Bloch e, no estudo em teoria quântica de campos, como vácuo-\theta.

Esses dois fenômenos: quebra espontânea de simetria e ínstantons, são amplamente estudados em TQC, seja teoricamente, seja fenomenologicamente. E muitas dessa fenomenologia poderá ser explorada no LHC. A idéia de vácuos falsos e a energia que se ganha ao decair para os vácuos verdadeiros também tem aplicações interessantes em cosmologia. 😎


Escrito em colaboração com Rafael Lopes de Sá

Referência:
LEMOS, N. A. Mecânica Analítica. Editora Livraria da Física. 2004. São Paulo.

%d blogueiros gostam disto: